|
Co/Fe3O4@Zeolite磁性催化剂的结构和活化降解盐酸四环素性能
|
Abstract:
本研究采用高能球磨法制备了钴掺杂磁性沸石(Co/Fe3O4@Zeolite)磁性催化剂,并将其用于活化过一硫酸盐(PMS)降解盐酸四环素(TCH)。利用XRD、VSM、SEM和EDS等表征对Co/Fe3O4@Zeolite复合催化剂的形貌和结构进行测试,结果表明Co/Fe3O4均匀地包覆在Zeolite的表面,并且催化剂具有较好的磁性可通过磁铁进行有效的磁分离便于循环利用。通过进行不同的反应体系对比,不同PMS用量、催化剂用量、pH值、循环实验、共存阴离子实验和自由基猝灭实验来评估Co/Fe3O4@Zeolite复合催化剂的催化性能。结果表明,在催化剂添加量为0.40 g/L、PMS添加量为2.0 mmol/L、pH为7时,催化剂的催化效果最好,50 mg/L的TCH去除率可达到98.8%。溶液中共存的阴离子如
、
、Cl?和
对催化剂的影响较小。经过5次循环实验,TCH的降解率仍能保持在80%以上,表明催化剂具有良好的循环稳定性。自由基猝灭实验表明1O2、
和
在TCH的降解过程中起主导作用。
In this study, cobalt doped magnetic zeolite (Co/Fe3O4@Zeolite) magnetic catalyst was prepared by high energy ball milling and used to activate peroxymonosulfate (PMS) to degrade tetracycline hydrochloride (TCH). The morphology and structure of Co/Fe3O4@Zeolite composite catalyst were tested by XRD, VSM, SEM and EDS. The results showed that Co/Fe3O4 was uniformly coated on the surface of Zeolite. Moreover, the catalyst has good magnetic properties and can be effectively separated by magnets to facilitate recycling. The catalytic performance of Co/Fe3O4@Zeolite composite catalyst was evaluated by comparing different reaction systems, different PMS dosage, catalyst dosage, pH value, cycling experiment, coexistence anion experiment and free radical quenching experiment. The results showed that when the addition of
[1] | Wang, Y., Kang, X., Li, Y., Li, R., Wu, C., Wang, L., et al. (2024) Cobalt-Loaded Carbon Nanofibers as Magnetic Catalyst for Tetracycline Degradation through Peroxydisulfate Activation: Non-Radical Dominated Mechanism. Journal of Water Process Engineering, 57, Article ID: 104600. https://doi.org/10.1016/j.jwpe.2023.104600 |
[2] | Han, Y., Zhu, Z., Hu, C., Zheng, J., Liu, B. and Wang, W. (2024) 3D Flower-Like Cu-BiOCl/Bi2S3 Heterostructure with Synergistic Cu Ion Doping: A Study on Efficient Tetracycline Degradation under Visible Light. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 133014. https://doi.org/10.1016/j.colsurfa.2023.133014 |
[3] | Yang, Y., Gong, F., Liu, X., Li, Y., Chen, Q. and Pan, S. (2024) Construction of NiP/Ni(OH)2/Ag-ZiF Photocatalyst with 2-Methylimidazole Framework for Rapid Removal of Tetracycline. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 132997. https://doi.org/10.1016/j.colsurfa.2023.132997 |
[4] | Zhang, D., He, Q., Hu, X., Zhang, K., Chen, C. and Xue, Y. (2021) Enhanced Adsorption for the Removal of Tetracycline Hydrochloride (TC) Using Ball-Milled Biochar Derived from Crayfish Shell. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 615, Article ID: 126254. https://doi.org/10.1016/j.colsurfa.2021.126254 |
[5] | Huo, Y., Zhou, G., Guan, Y., Meng, X., Yan, W., Hu, J., et al. (2024) Inducing Oxygen Vacancies in ZnO/Co3O4 via G-C3N4 Carrier for Enhanced Universality and Stability in TC Degradation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 683, Article ID: 132974. https://doi.org/10.1016/j.colsurfa.2023.132974 |
[6] | Huang, N., Wang, T., Wu, Y., Wang, F., Zhang, D., Zhou, R., et al. (2023) Preparation of Magnetically Recyclable Hierarchical Porous Sludge-Pine Needle Derived Biochar Loaded CoFe2O4 Nanoparticles for Rapid Degradation of Tetracycline by Activated PMS. Materials Today Communications, 35, Article ID: 106313. https://doi.org/10.1016/j.mtcomm.2023.106313 |
[7] | Xiang, W., Zhang, X., Luo, J., Li, Y., Guo, T. and Gao, B. (2022) Performance of Lignin Impregnated Biochar on Tetracycline Hydrochloride Adsorption: Governing Factors and Mechanisms. Environmental Research, 215, Article ID: 114339. https://doi.org/10.1016/j.envres.2022.114339 |
[8] | Madhusudan, P., Lee, C. and Kim, J. (2023) Enhanced Recovery of Phosphate from Wastewater Using Hollow Hierarchical Hydrotalcite/Hydroxide Composite Microspheres Adsorbent. Journal of Water Process Engineering, 53, Article ID: 103897. https://doi.org/10.1016/j.jwpe.2023.103897 |
[9] | Pandi, K., Periyasamy, S. and Viswanathan, N. (2017) Remediation of Fluoride from Drinking Water Using Magnetic Iron Oxide Coated Hydrotalcite/chitosan Composite. International Journal of Biological Macromolecules, 104, 1569-1577. https://doi.org/10.1016/j.ijbiomac.2017.02.037 |
[10] | Le, V., Nguyen, T., Doong, R., Chen, C., Tran, C. and Dong, C. (2023) Peroxymonosulfate Activation over NiCo2O4/MnOOH for Enhancing Ciprofloxacin Degradation in Water. Environmental Technology & Innovation, 30, Article ID: 103117. https://doi.org/10.1016/j.eti.2023.103117 |
[11] | Wang, L., Li, J., Du, Z., Jin, M., Yao, J. and Zhang, Z. (2023) MnFe2O4/Zeolite Composite Catalyst for Activating Peroxymonosulfate to Efficiently Degrade Antibiotic. Materials Letters, 344, Article ID: 134460. https://doi.org/10.1016/j.matlet.2023.134460 |
[12] | Wang, L., Li, J., Ning, J., Hu, T., Wang, H., Zhang, Z., et al. (2023) Enhanced Degradation of Methyl Orange with CoFe2O4@Zeolite Catalyst as Peroxymonosulfate Activator: Performance and Mechanism. Journal of Inorganic Materials, 38, 469-476. https://doi.org/10.15541/jim20220591 |
[13] | Qian, J., Mi, X., Chen, Z., Xu, W., Liu, W., Ma, R., et al. (2023) Efficient Emerging Contaminants (EM) Decomposition via Peroxymonosulfate (PMS) Activation by Co3O4/carbonized Polyaniline (CPANI) Composite: Characterization of Tetracycline (TC) Degradation Property and Application for the Remediation of Em-Polluted Water Body. Journal of Cleaner Production, 405, Article ID: 137023. https://doi.org/10.1016/j.jclepro.2023.137023 |
[14] | Zhang, M., Tao, H., Zhai, C., Yang, J., Zhou, Y., Xia, D., et al. (2023) Twin-Brush ZnO Mesocrystal for the Piezo-Activation of Peroxymonosulfate to Remove Ibuprofen in Water: Performance and Mechanism. Applied Catalysis B: Environmental, 326, Article ID: 122399. https://doi.org/10.1016/j.apcatb.2023.122399 |
[15] | Liu, H., Wen, X., Zhang, J., Zhang, H. and Wei, J. (2023) High Performance Membrane Filtration Coupled with PMS/CoFe2O4 Catalytic Degradation for Dyes. Chemical Engineering Research and Design, 193, 660-668. https://doi.org/10.1016/j.cherd.2023.04.023 |
[16] | Deng, J., Xiao, L., Yuan, S., Wang, W., Zhan, X. and Hu, Z. (2021) Activation of Peroxymonosulfate by Cofeni Layered Double Hydroxide/Graphene Oxide (LDH/GO) for the Degradation of Gatifloxacin. Separation and Purification Technology, 255, Article ID: 117685. https://doi.org/10.1016/j.seppur.2020.117685 |
[17] | Khaghani, R., Kakavandi, B., Ghadirinejad, K., Dehghani Fard, E. and Asadi, A. (2019) Preparation, Characterization and Catalytic Potential of γ-Fe2O3@ac Mesoporous Heterojunction for Activation of Peroxymonosulfate into Degradation of Cyfluthrin Insecticide. Microporous and Mesoporous Materials, 284, 111-121. https://doi.org/10.1016/j.micromeso.2019.04.013 |