全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

西辽河流域黄土研究进展与展望
Progress and Prospects of Loess Research in West Liaohe River Basin

DOI: 10.12677/ccrl.2025.141002, PP. 8-20

Keywords: 黄土,西辽河流域,年代地层学,气候变化,物质来源
Loess
, West Liaohe River Basin, Chronostratigraphy, Climate Change, Material Sources

Full-Text   Cite this paper   Add to My Lib

Abstract:

西辽河流域是东北黄土的分布亚区之一,流域内广泛分布着风成黄土沉积物,是研究区域环境变化的理想材料。本文从该区黄土沉积物的沉积与分布特征、形成年代、可能的物质来源、黄土沉积反映的不同时间尺度的气候变化特征及驱动机制等方面综述了近年来该区黄土研究的主要进展。结果表明:(1) 该区绝大多数黄土沉积物为原生黄土,沉积速率相对较高的黄土剖面通常沿浑善达克沙地和科尔沁沙地边缘零星分布,多形成于末次冰期以来。更老的黄土剖面位于流域南部,目前已知的最老的黄土沉积物的底界年龄为~1.22 Ma。(2) 该区的黄土沉积物记录了亚洲内陆干旱化与东部沙地的扩张历史,主要与中更新世气候转型(MPT)以来全球冰量的逐渐增长有关。(3) 黄土记录还反映了不同时间尺度的东亚夏季风(EASM)变化特征及其驱动机制。全新世期间,区域夏季风降水呈现出“低–高–低”的模式,主要受控于全球冰量和海平面的变化,其次由太阳辐射驱动。晚第四纪以来,黄土记录了多次气候干湿波动。多指标的分析结果表明,该区的EASM自早/中更新世以来持续减弱,特别是在中布容事件(MBE)后的间冰期,为EASM对MBE的区域差异响应提供了证据。未来应加强研究区黄土沉积物的底界年龄、古气候定量重建以及黄土粉尘物质来源等方面的系统研究。
The West Liaohe River Basin is one of the distribution subregions of loess in Northeast China, and wind-formed loess sediments are widely distributed in the basin, which is an ideal material for the study of regional environmental changes. This article summarizes the main progress in loess research in this area in recent years, including sedimentation and distribution characteristics, formation age, possible material sources, climate change characteristics and driving mechanisms reflected by loess sedimentation at different time scales. The results show that: (1) the majority of loess sediments in the region are primary loess, and loess profiles with relatively high sedimentation rates are usually sporadically distributed along the edges of the Otindag and Horqin sandy lands, and most of them have been formed since the last glacial period. Older loess profiles are located in the southern part of the basin, with the oldest known loess deposits having a base age of ~1.22 Ma. (2) Loess deposits in the region record the history of aridification of the Asian interior and expansion of the eastern sands, mainly related to the gradual increase in global ice volume since the Mid Pleistocene Climate Transition (MPT). (3) The eolian record also reflects the characteristics of East Asian Summer Monsoon (EASM) variability and its driving mechanisms at different time scales. During the Holocene, the regional EASM precipitation showed a “low-high-low” pattern, which was mainly controlled by global ice volume and sea level changes, and secondly driven by solar radiation. Since the Late Quaternary, the Loess has recorded several climatic wet and dry fluctuations. The results of the multi-indicator analyses indicate that the EASM in the region has continued to weaken since the Early/Middle Pleistocene, especially during the interglacial period following the Mid Brunhes Event (MBE), which provides evidence

References

[1]  Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M.A. and Gao, G. (2020) Loess Genesis and Worldwide Distribution. Earth-Science Reviews, 201, Article ID: 102947.
https://doi.org/10.1016/j.earscirev.2019.102947
[2]  An, Z.S., Liu, T., Lu, Y.C., Porter, S.C., Kukla, G., Wu, X.H., et al. (1990) The Long-Term Paleomonsoon Variation Recorded by the Loess-Paleosol Sequence in Central China. Quaternary International, 7, 91-95.
https://doi.org/10.1016/1040-6182(90)90042-3
[3]  Ding, Z.L., Derbyshire, E., Yang, S.L., Yu, Z.W., Xiong, S.F. and Liu, T.S. (2002) Stacked 2.6‐ma Grain Size Record from the Chinese Loess Based on Five Sections and Correlation with the Deep‐Sea δ18O Record. Paleoceanography, 17, 5-1-5-21.
https://doi.org/10.1029/2001pa000725
[4]  Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., et al. (2002) Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416, 159-163.
https://doi.org/10.1038/416159a
[5]  An, Z. (2000) The History and Variability of the East Asian Paleomonsoon Climate. Quaternary Science Reviews, 19, 171-187.
https://doi.org/10.1016/s0277-3791(99)00060-8
[6]  Chen, J. and Li, G. (2011) Geochemical Studies on the Source Region of Asian Dust. Science China Earth Sciences, 54, 1279-1301.
https://doi.org/10.1007/s11430-011-4269-z
[7]  Sun, Y. and An, Z. (2005) Late Pliocene‐Pleistocene Changes in Mass Accumulation Rates of Eolian Deposits on the Central Chinese Loess Plateau. Journal of Geophysical Research: Atmospheres, 110, D23101.
https://doi.org/10.1029/2005jd006064
[8]  刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.
[9]  孙建中. 黄土学(上篇) [M]. 香港: 香港考古学会, 2005.
[10]  Xie, Y., Kang, C., Chi, Y., Du, H., Wang, J. and Sun, L. (2019) The Loess Deposits in Northeast China: The Linkage of Loess Accumulation and Geomorphic-Climatic Features at the Easternmost Edge of the Eurasian Loess Belt. Journal of Asian Earth Sciences, 181, Article ID: 103914.
https://doi.org/10.1016/j.jseaes.2019.103914
[11]  Zeng, L., Lu, H., Yi, S., Stevens, T., Xu, Z., Zhuo, H., et al. (2017) Long-Term Pleistocene Aridification and Possible Linkage to High-Latitude Forcing: New Evidence from Grain Size and Magnetic Susceptibility Proxies from Loess-Paleosol Record in Northeastern China. Catena, 154, 21-32.
https://doi.org/10.1016/j.catena.2017.02.020
[12]  Sun, M., Zhang, X., Tian, M., Liu, R., He, Z., Qi, L., et al. (2018) Loess Deposits since Early Pleistocene in Northeast China and Implications for Desert Evolution in East China. Journal of Asian Earth Sciences, 155, 164-173.
https://doi.org/10.1016/j.jseaes.2017.09.013
[13]  Yi, S., Buylaert, J., Murray, A.S., Lu, H., Thiel, C. and Zeng, L. (2016) A Detailed Post‐IR IRSL Dating Study of the Niuyangzigou Loess Site in Northeastern China. Boreas, 45, 644-657.
https://doi.org/10.1111/bor.12185
[14]  Yi, S., Buylaert, J., Murray, A.S., Thiel, C., Zeng, L. and Lu, H. (2015) High Resolution OSL and Post-IR IRSL Dating of the Last Interglacial-Glacial Cycle at the Sanbahuo Loess Site (Northeastern China). Quaternary Geochronology, 30, 200-206.
https://doi.org/10.1016/j.quageo.2015.02.013
[15]  Yi, S., Lu, H. and Stevens, T. (2012) SAR TT-OSL Dating of the Loess Deposits in the Horqin Dunefield (Northeastern China). Quaternary Geochronology, 10, 56-61.
https://doi.org/10.1016/j.quageo.2012.03.011
[16]  Zeng, L., Lu, H., Yi, S., Li, Y., Lv, A., Zhang, W., et al. (2016) New Magnetostratigraphic and Pedostratigraphic Investigations of Loess Deposits in Northeast China and Their Implications for Regional Environmental Change during the Mid‐Pleistocene Climatic Transition. Journal of Quaternary Science, 31, 20-32.
https://doi.org/10.1002/jqs.2829
[17]  曾琳, 鹿化煜, 弋双文, 徐志伟, 邱志敏, 杨振宇, 等. 我国东北地区黄土堆积的磁性地层年代与古气候变化[J]. 科学通报, 2011, 56(27): 2267-2275.
[18]  Li, G., Chen, J., Ji, J., Yang, J. and Conway, T.M. (2009) Natural and Anthropogenic Sources of East Asian Dust. Geology, 37, 727-730.
https://doi.org/10.1130/g30031a.1
[19]  Li, L., Li, G.K., Li, T., Yi, S., Lu, H., Hedding, D.W., et al. (2023) Tracking the Provenance of Aeolian Loess in Northeastern China by Uranium Isotopes. Geochemistry, Geophysics, Geosystems, 24, e2022GC010715.
https://doi.org/10.1029/2022gc010715
[20]  Nakano, T. (2004) Regional Sr-Nd Isotopic Ratios of Soil Minerals in Northern China as Asian Dust Fingerprints. Atmospheric Environment, 38, 3061-3067.
https://doi.org/10.1016/j.atmosenv.2004.02.016
[21]  Xie, J., Yang, S. and Ding, Z. (2012) Methods and Application of Using Detrital Zircons to Trace the Provenance of Loess. Science China Earth Sciences, 55, 1837-1846.
https://doi.org/10.1007/s11430-012-4428-x
[22]  Yin, J., Han, Z., Zeng, Y., Qin, L., Pan, R., Zhou, Y., et al. (2023) The Largest Deflation Basin in Asia Reveals That the Miocene Basin-Filling Sediments in the Eastern Gobi Desert Are an Important Dust Source. Geomorphology, 436, Article ID: 108780.
https://doi.org/10.1016/j.geomorph.2023.108780
[23]  Zeng, L., Yi, S., Zhang, W., Feng, H., Lv, A., Zhao, W., et al. (2020) Provenance of Loess Deposits and Stepwise Expansion of the Desert Environment in NE China since ~1.2 Ma: Evidence from Nd-Sr Isotopic Composition and Grain-Size Record. Global and Planetary Change, 185, Article ID: 103087.
https://doi.org/10.1016/j.gloplacha.2019.103087
[24]  Zhao, W., Sun, Y., Balsam, W., Zeng, L., Lu, H., Otgonbayar, K., et al. (2015) Clay‐Sized Hf‐Nd‐Sr Isotopic Composition of Mongolian Dust as a Fingerprint for Regional to Hemispherical Transport. Geophysical Research Letters, 42, 5661-5669.
https://doi.org/10.1002/2015gl064357
[25]  Lei, F., Wei, H., Yi, S., Zeng, L. and Lu, H. (2021) Variations of the East Asian Monsoon over the Past 800 Kyr Constrained by the Boron Isotope Composition of Paleo-Rainwater Inferred from Loess-Paleosol Deposits in NE China. Earth and Planetary Science Letters, 561, Article ID: 116826.
https://doi.org/10.1016/j.epsl.2021.116826
[26]  Lyu, A., Lu, H., Zeng, L., Zhang, H., Zhang, E. and Yi, S. (2018) Vegetation Variation of Loess Deposits in the Southeastern Inner Mongolia, NE China over the Past ∼1.08 Million Years. Journal of Asian Earth Sciences, 155, 174-179.
https://doi.org/10.1016/j.jseaes.2017.11.013
[27]  Mu, Y., Qin, X., Zhang, L. and Xu, B. (2016) Holocene Climate Change Evidence from High-Resolution Loess/Paleosol Records and the Linkage to Fire-Climate Change-human Activities in the Horqin Dunefield in Northern China. Journal of Asian Earth Sciences, 121, 1-8.
https://doi.org/10.1016/j.jseaes.2016.01.017
[28]  Sheng, M., Jiang, K., Wang, X., Jiang, Z., Tang, L. and Zhou, Z. (2023) Magnetoclimatological Record of Late Pleistocene Loess in the Southern Hunshandake Sandy Land, Inner Mongolia: A Threshold Response to the East Asian Summer Monsoon Variations. Geochemistry, Geophysics, Geosystems, 24, e2023GC010905.
https://doi.org/10.1029/2023gc010905
[29]  Zeng, Y., Li, X., Liu, Y., Li, Y., Qin, L., Zhao, C., et al. (2024) Quantification of Holocene Temperatures in the Eastern Hunshandake Sandy Land Using δ13C of Loess Organic Matter. Global and Planetary Change, 237, Article ID: 104457.
https://doi.org/10.1016/j.gloplacha.2024.104457
[30]  Zhou, Y., Han, Z., Li, X., Wang, Y., Lv, C., Jiang, M., et al. (2018) Sandy Loess Records of Precipitation Changes and Monsoon Migrations in the Hunshandake Sandy Land since the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 33, 945-957.
https://doi.org/10.1029/2018pa003339
[31]  蒋凯, 王喜生, 盛美. 浑善达克沙地南缘晚更新世黄土-古土壤序列的高分辨率磁性气候记录[J]. 第四纪研究, 2019, 39(3): 565-578.
[32]  鹿化煜, 张红艳, 曾琳, 吕安琪, 张朝晖, 陈英勇, 等. 温度影响东北地区更新世植被变化的黄土记录[J]. 第四纪研究, 2015, 35(4): 828-836.
[33]  吕安琪, 鹿化煜, 曾琳, 弋双文, 卓海昕, 徐志伟, 等. 1.08 Ma以来中国东北赤峰地区黄土粒度变化及其揭示的沙地扩张事件[J]. 中国沙漠, 2017, 37(4): 659-665.
[34]  弋双文, 鹿化煜, 周亚利, 苗晓东. 晚第四纪科尔沁沙地干湿变化的黄土记录[J] 中国沙漠, 2006, 26(6): 869-874.
[35]  中国科学院内蒙古宁夏综合考察队. 内蒙古植被[M]. 北京: 科学出版社, 1985.
[36]  弋双文. 我国东北地区黄土堆积的光释光测年及环境变化[D]: [博士学位论文]. 南京: 南京大学, 2017.
[37]  郭佳宁. 内蒙古宁城中更新世以来黄土磁化率与粒度特征及古环境研究[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2009.
[38]  曾琳. 中国东北地区1.2 Ma以来的黄土地层和古气候记录[D]: [博士学位论文]. 南京: 南京大学, 2016.
[39]  张文山, 刘金峰, 田全伦. 赤峰南山顶部黄土古地磁事件及其区域地质表现[J] 河北地质学院学报, 1994(3): 236-244.
[40]  Snyder, C.W. (2016) Evolution of Global Temperature over the Past Two Million Years. Nature, 538, 226-228.
https://doi.org/10.1038/nature19798
[41]  Miller, K.G., Browning, J.V., Schmelz, W.J., Kopp, R.E., Mountain, G.S. and Wright, J.D. (2020) Cenozoic Sea-Level and Cryospheric Evolution from Deep-Sea Geochemical and Continental Margin Records. Science Advances, 6, eaaz1346.
https://doi.org/10.1126/sciadv.aaz1346
[42]  Lisiecki, L.E. and Raymo, M.E. (2005) A Pliocene‐Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20, [page].
https://doi.org/10.1029/2004pa001071
[43]  Chen, F., Xu, Q., Chen, J., Birks, H.J.B., Liu, J., Zhang, S., et al. (2015) East Asian Summer Monsoon Precipitation Variability since the Last Deglaciation. Scientific Reports, 5, PA1003.
https://doi.org/10.1038/srep11186
[44]  Wen, R., Xiao, J., Fan, J., Zhang, S. and Yamagata, H. (2017) Pollen Evidence for a Mid-Holocene East Asian Summer Monsoon Maximum in Northern China. Quaternary Science Reviews, 176, 29-35.
https://doi.org/10.1016/j.quascirev.2017.10.008
[45]  Xiao, J., Xu, Q., Nakamura, T., Yang, X., Liang, W. and Inouchi, Y. (2004) Holocene Vegetation Variation in the Daihai Lake Region of North-Central China: A Direct Indication of the Asian Monsoon Climatic History. Quaternary Science Reviews, 23, 1669-1679.
https://doi.org/10.1016/j.quascirev.2004.01.005
[46]  Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J.P., et al. (2007) Northern Hemisphere Forcing of Climatic Cycles in Antarctica over the Past 360,000 Years. Nature, 448, 912-916.
https://doi.org/10.1038/nature06015
[47]  Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M. and Levrard, B. (2004) A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428, 261-285.
https://doi.org/10.1051/0004-6361:20041335
[48]  Wu, P., Xie, Y., Chi, Y., Kang, C., Sun, L., Wei, Z., et al. (2021) Loess Accumulation in Harbin with Implications for Late Quaternary Aridification in the Songnen Plain, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 570, Article ID: 110365.
https://doi.org/10.1016/j.palaeo.2021.110365
[49]  王松娜, 王旭龙, 康树刚. 中国东北末次冰期松原黄土的释光测年及其古气候意义初探[J] 地球环境学报, 2017, 8(5): 397-406.
https://doi.org/10.7515/JEE201705003
[50]  Chalk, T.B., Hain, M.P., Foster, G.L., Rohling, E.J., Sexton, P.F., Badger, M.P.S., et al. (2017) Causes of Ice Age Intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences, 114, 13114-13119.
https://doi.org/10.1073/pnas.1702143114
[51]  Dyez, K.A., Hönisch, B. and Schmidt, G.A. (2018) Early Pleistocene Obliquity‐Scale pCO2 Variability at ~1.5 Million Years Ago. Paleoceanography and Paleoclimatology, 33, 1270-1291.
https://doi.org/10.1029/2018pa003349
[52]  Hönisch, B., Hemming, N.G., Archer, D., Siddall, M. and McManus, J.F. (2009) Atmospheric Carbon Dioxide Concentration across the Mid-Pleistocene Transition. Science, 324, 1551-1554.
https://doi.org/10.1126/science.1171477
[53]  Lisiecki, L.E. (2010) A Benthic δ13C‐Based Proxy for Atmospheric pCO2 over the Last 1.5 Myr. Geophysical Research Letters, 37, L21708.
https://doi.org/10.1029/2010gl045109
[54]  Yan, Y., Bender, M.L., Brook, E.J., Clifford, H.M., Kemeny, P.C., Kurbatov, A.V., et al. (2019) Two-Million-Year-Old Snapshots of Atmospheric Gases from Antarctic Ice. Nature, 574, 663-666.
https://doi.org/10.1038/s41586-019-1692-3
[55]  Yang, S. and Ding, Z. (2008) Advance-Retreat History of the East-Asian Summer Monsoon Rainfall Belt over Northern China during the Last Two Glacial-Interglacial Cycles. Earth and Planetary Science Letters, 274, 499-510.
https://doi.org/10.1016/j.epsl.2008.08.001
[56]  Stevens, T., Buylaert, J.-., Thiel, C., Újvári, G., Yi, S., Murray, A.S., et al. (2018) Ice-Volume-Forced Erosion of the Chinese Loess Plateau Global Quaternary Stratotype Site. Nature Communications, 9, Article No. 983.
https://doi.org/10.1038/s41467-018-03329-2
[57]  Wu, P., Xie, Y., Chi, Y., Wang, Y. and Liu, R. (2024) Temperature Controls on the C4 Plants Expansion in the Mid-Latitudes and Its Ecological Implications for Dryland Paleoclimatic Reconstruction: A Stable Carbon Isotope Perspective. Earth-Science Reviews, 249, Article ID: 104678.
https://doi.org/10.1016/j.earscirev.2024.104678
[58]  Gao, X., Hao, Q., Wang, L., Song, Y., Ge, J., Wu, H., et al. (2024) Changes in Monsoon Precipitation in East Asia under a 2 ˚C Interglacial Warming. Science Advances, 10, eadm7694.
https://doi.org/10.1126/sciadv.adm7694
[59]  Lu, H., Liu, W., Yang, H., Wang, H., Liu, Z., Leng, Q., et al. (2019) 800-kyr Land Temperature Variations Modulated by Vegetation Changes on Chinese Loess Plateau. Nature Communications, 10, Article No. 1958.
https://doi.org/10.1038/s41467-019-09978-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133