全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

水解动物蛋白在宠物粮食中的应用研究进展
Research Progress on Application of Hydrolyzed Protein from Animals in Pet Food

DOI: 10.12677/hjfns.2025.141007, PP. 42-48

Keywords: 水解蛋白,生物活性肽,氨基酸,健康,宠物粮食
Hydrolyzed Protein
, Bioactive Peptide, Amino Acid, Health, Pet Food

Full-Text   Cite this paper   Add to My Lib

Abstract:

动物副产品是宠物粮食中水解蛋白的主要来源。近年来,宠物粮食生产行业已经开始合理利用酶水解后的动物蛋白产物,主要包括生物活性肽等低过敏性成分。除了具有较高的氨基酸生物利用率之外,蛋白质水解物释放的生物活性肽等物质还具有抗氧化、抗菌、免疫调节、组织修复、抗高血压和血糖控制作用,其中许多功能特性已在伴侣动物上进行了研究。本文重点综述了以生物活性肽为代表的动物蛋白水解物的生产、来源和应用,以及在对宠物健康影响上的研究进展,以期为宠物粮食中合理使用生物活性肽等动物蛋白水解物提供参考。
Animal by-products are the main source of formulated proteins in pet food. In recent years, the pet food production industry has begun to effectively utilize enzymatically processed animal protein products, mainly including hypoallergenic ingredients such as bioactive peptides. In addition to having the same irritation and bioavailability, protein hydrolysates release bioactive peptides with antioxidant, antibacterial, immunomodulatory, tissue repair, antihypertensive and hypertension control effects, many of which have been studied in partner animals. The production, source and application of bioactive peptides, as well as the research progress on their impact on pet health, are discussed in order to provide a reference for the rational use of bioactive peptides in pet food.

References

[1]  Alexander, P., Berri, A., Moran, D., Reay, D. and Rounsevell, M.D.A. (2020) The Global Environmental Paw Print of Pet Food. Global Environmental Change, 65, Article 102153.
https://doi.org/10.1016/j.gloenvcha.2020.102153
[2]  Zóia Miltenburg, T., Uana da Silva, M., Bosch, G. and Vasconcellos, R.S. (2020) Effects of Enzymatically Hydrolysed Poultry Byproduct Meal in Extruded Diets on Serum Angiotensin-Converting Enzyme Activity and Aldosterone in Cats. Archives of Animal Nutrition, 75, 64-77.
https://doi.org/10.1080/1745039x.2020.1849899
[3]  Hou, Y., Wu, Z., Dai, Z., Wang, G. and Wu, G. (2017) Protein Hydrolysates in Animal Nutrition: Industrial Production, Bioactive Peptides, and Functional Significance. Journal of Animal Science and Biotechnology, 8, Article No. 24.
https://doi.org/10.1186/s40104-017-0153-9
[4]  He, S., Franco, C. and Zhang, W. (2013) Functions, Applications and Production of Protein Hydrolysates from Fish Processing Co-Products (FPCP). Food Research International, 50, 289-297.
https://doi.org/10.1016/j.foodres.2012.10.031
[5]  Pasupuleti, V.K. and Demain, A.L. (2010) Protein Hydrolysates in Biotechnology. Springer.
[6]  Papadopoulos, M.C., El-Boushy, A.R. and Roodbeen, A.E. (1985) The Effect of Varying Autoclaving Conditions and Added Sodium Hydroxide on Amino Acid Content and Nitrogen Characteristics of Feather Meal. Journal of the Science of Food and Agriculture, 36, 1219-1226.
https://doi.org/10.1002/jsfa.2740361204
[7]  Kim, W.K., Lorenz, E.S. and Patterson, P.H. (2002) Effect of Enzymatic and Chemical Treatments on Feather Solubility and Digestibility. Poultry Science, 81, 95-98.
https://doi.org/10.1093/ps/81.1.95
[8]  Korhonen, H. and Pihlanto, A. (2006) Bioactive Peptides: Production and Functionality. International Dairy Journal, 16, 945-960.
https://doi.org/10.1016/j.idairyj.2005.10.012
[9]  Smid, E.J. and Lacroix, C. (2013) Microbe-Microbe Interactions in Mixed Culture Food Fermentations. Current Opinion in Biotechnology, 24, 148-154.
https://doi.org/10.1016/j.copbio.2012.11.007
[10]  López-Pérez, M. and Viniegra-González, G. (2015) Production of Protein and Metabolites by Yeast Grown in Solid State Fermentation: Present Status and Perspectives. Journal of Chemical Technology & Biotechnology, 91, 1224-1231.
https://doi.org/10.1002/jctb.4819
[11]  Sandhu, K.S., Punia, S. and Kaur, M. (2017) Fermentation of Cereals: A Tool to Enhance Bioactive Compounds. In: Plant Biotechnology: Recent Advancements and Developments, Springer, 157-170.
https://doi.org/10.1007/978-981-10-4732-9_8
[12]  Lorenzo, J.M., Munekata, P.E.S., Gómez, B., Barba, F.J., Mora, L., Pérez-Santaescolástica, C., et al. (2018) Bioactive Peptides as Natural Antioxidants in Food Products—A Review. Trends in Food Science & Technology, 79, 136-147.
https://doi.org/10.1016/j.tifs.2018.07.003
[13]  Amigo, L. and Hernández-Ledesma, B. (2020) Current Evidence on the Bioavailability of Food Bioactive Peptides. Molecules, 25, Article 4479.
https://doi.org/10.3390/molecules25194479
[14]  Escudero, E., Toldrá, F., Sentandreu, M.A., Nishimura, H. and Arihara, K. (2012) Antihypertensive Activity of Peptides Identified in the in Vitro Gastrointestinal Digest of Pork Meat. Meat Science, 91, 382-384.
https://doi.org/10.1016/j.meatsci.2012.02.007
[15]  Vij, R., Reddi, S., Kapila, S. and Kapila, R. (2016) Transepithelial Transport of Milk Derived Bioactive Peptide VLPVPQK. Food Chemistry, 190, 681-688.
https://doi.org/10.1016/j.foodchem.2015.05.121
[16]  Theysgeur, S., Cudennec, B., Deracinois, B., Perrin, C., Guiller, I., Lepoudère, A., et al. (2020) New Bioactive Peptides Identified from a Tilapia Byproduct Hydrolysate Exerting Effects on DPP-IV Activity and Intestinal Hormones Regulation after Canine Gastrointestinal Simulated Digestion. Molecules, 26, Article 136.
https://doi.org/10.3390/molecules26010136
[17]  Funayama, T., Nozu, T., Ishioh, M., Igarashi, S., Sumi, C., Saito, T., et al. (2023) Centrally Administered GLP-1 Analogue Improves Intestinal Barrier Function through the Brain Orexin and the Vagal Pathway in Rats. Brain Research, 1809, Article 148371.
https://doi.org/10.1016/j.brainres.2023.148371
[18]  Meineri, G., Martello, E., Radice, E., Bruni, N., Saettone, V., Atuahene, D., et al. (2022) Chronic Intestinal Disorders in Humans and Pets: Current Management and the Potential of Nutraceutical Antioxidants as Alternatives. Animals, 12, Article 812.
https://doi.org/10.3390/ani12070812
[19]  Vidal, A.R., Cansian, R.L., Mello, R.D.O., Demiate, I.M., Kempka, A.P., Dornelles, R.C.P., et al. (2022) Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants, 11, Article 1173.
https://doi.org/10.3390/antiox11061173
[20]  Mine, Y. and Kovacs-Nolan, J. (2006) New Insights in Biologically Active Proteins and Peptides Derived from Hen Egg. World’s Poultry Science Journal, 62, 87-96.
https://doi.org/10.1079/wps200586
[21]  Jang, A., Jo, C., Kang, K. and Lee, M. (2008) Antimicrobial and Human Cancer Cell Cytotoxic Effect of Synthetic Angiotensin-Converting Enzyme (ACE) Inhibitory Peptides. Food Chemistry, 107, 327-336.
https://doi.org/10.1016/j.foodchem.2007.08.036
[22]  Olivry, T., Bexley, J. and Mougeot, I. (2017) Extensive Protein Hydrolyzation Is Indispensable to Prevent IGE-Mediated Poultry Allergen Recognition in Dogs and Cats. BMC Veterinary Research, 13, Article No. 251.
https://doi.org/10.1186/s12917-017-1183-4
[23]  Schunck, M., Louton, H. and Oesser, S. (2017) The Effectiveness of Specific Collagen Peptides on Osteoarthritis in Dogs-Impact on Metabolic Processes in Canine Chondrocytes. Open Journal of Animal Sciences, 7, 254-266.
https://doi.org/10.4236/ojas.2017.73020
[24]  Ruff, K., Kopp, K., Von Behrens, P., Lux, M., Mahn, M. and Back, M. (2016) Effectiveness of Nem Brand Eggshell Membrane in the Treatment of Suboptimal Joint Function in Dogs: A Multicenter, Randomized, Double-Blind, Placebo-Controlled Study. Veterinary Medicine: Research and Reports, 7, 113-121.
https://doi.org/10.2147/vmrr.s101842
[25]  Pinto, C.F.D., de Oliveira, B.B., Bortolo, M., Guldenpfennig, R., Marx, F.R. and Trevizan, L. (2022) Hydrolyzed Chicken Liver Used as Single Source of Animal Protein in Diet and Its Effect on Cytokines, Immunoglobulins, and Fecal Microbiota Profile of Adult Dogs. PLOS ONE, 17, e0271932.
https://doi.org/10.1371/journal.pone.0271932
[26]  Zaky, A.A., Simal-Gandara, J., Eun, J., Shim, J. and Abd El-Aty, A.M. (2022) Bioactivities, Applications, Safety, and Health Benefits of Bioactive Peptides from Food and By-Products: A Review. Frontiers in Nutrition, 8, Article 815640.
https://doi.org/10.3389/fnut.2021.815640
[27]  Saiga, A., Tanabe, S. and Nishimura, T. (2003) Antioxidant Activity of Peptides Obtained from Porcine Myofibrillar Proteins by Protease Treatment. Journal of Agricultural and Food Chemistry, 51, 3661-3667.
https://doi.org/10.1021/jf021156g
[28]  Li, B., Chen, F., Wang, X., Ji, B. and Wu, Y. (2007) Isolation and Identification of Antioxidative Peptides from Porcine Collagen Hydrolysate by Consecutive Chromatography and Electrospray Ionization-Mass Spectrometry. Food Chemistry, 102, 1135-1143.
https://doi.org/10.1016/j.foodchem.2006.07.002
[29]  Pinto, C.F.D., Monteiro, C.F.C., Bortolo, M., Marx, F.R., Model, J.F.A., Vinagre, A.S., et al. (2023) Effects of Diets Based on Hydrolyzed Chicken Liver and Different Protein Concentrations on the Formation and Deamination of Biogenic Amines and Total Antioxidant Capacity of Dogs. Animals, 13, Article 2578.
https://doi.org/10.3390/ani13162578
[30]  Hu, R., Dunmire, K.M., Truelock, C.N., Paulk, C.B., Aldrich, G. and Li, Y. (2020) Antioxidant Performances of Corn Gluten Meal and DDGS Protein Hydrolysates in Food, Pet Food, and Feed Systems. Journal of Agriculture and Food Research, 2, Article 100030.
https://doi.org/10.1016/j.jafr.2020.100030
[31]  Haney, E.F. and Hancock, R.E.W. (2013) Peptide Design for Antimicrobial and Immunomodulatory Applications. Peptide Science, 100, 572-583.
https://doi.org/10.1002/bip.22250
[32]  Reddy, K.V.R., Yedery, R.D. and Aranha, C. (2004) Antimicrobial Peptides: Premises and Promises. International Journal of Antimicrobial Agents, 24, 536-547.
https://doi.org/10.1016/j.ijantimicag.2004.09.005
[33]  Kumar, R., Ali, S.A., Singh, S.K., Bhushan, V., Mathur, M., Jamwal, S., et al. (2020) Antimicrobial Peptides in Farm Animals: An Updated Review on Its Diversity, Function, Modes of Action and Therapeutic Prospects. Veterinary Sciences, 7, Article 206.
https://doi.org/10.3390/vetsci7040206
[34]  Hollmann, A., Martinez, M., Maturana, P., Semorile, L.C. and Maffia, P.C. (2018) Antimicrobial Peptides: Interaction with Model and Biological Membranes and Synergism with Chemical Antibiotics. Frontiers in Chemistry, 6, Article 204.
https://doi.org/10.3389/fchem.2018.00204
[35]  Acquah, C., Di Stefano, E. and Udenigwe, C.C. (2018) Role of Hydrophobicity in Food Peptide Functionality and Bioactivity. Journal of Food Bioactives, 4, 88-98.
https://doi.org/10.31665/jfb.2018.4164
[36]  Hartmann, R. and Meisel, H. (2007) Food-Derived Peptides with Biological Activity: From Research to Food Applications. Current Opinion in Biotechnology, 18, 163-169.
https://doi.org/10.1016/j.copbio.2007.01.013

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133