全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于实测数据的光伏电站故障穿越关键参数辨识
Identification of Key Parameters for Fault Crossing in Photovoltaic Power Plants Based on Measured Data

DOI: 10.12677/mos.2025.141008, PP. 74-88

Keywords: 光伏电站,高低电压穿越,参数辨识,灵敏度分析,改进樽海鞘群算法,新能源稳定运行
Photovoltaic Power Plant
, High and Low Voltage Ride-Through, Parameter Identification, Sensitivity Analysis, Improved Salp Swarm Algorithm, Stable Operation of New Energy

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了更好地避免新能源场站并网故障给电网造成解列,验证光伏电站高低电压穿越能力,得到其准确的模型控制参数等关键问题,本文提出了一种基于高低电压穿越试验实测数据、考虑故障穿越全过程特性的光伏电站关键参数辨识方法。首先基于实测数据,建立光伏电站BPA模型,其次通过对模型参数进行灵敏度分析确定关键辨识参数,最后提出一种多策略改进的樽海鞘群算法(Salp Swarm Algorithm, SSA)的光伏电站模型辨识方法,不断优化更新待辨识参数并进行暂稳计算,计算仿真模型输出与实测数据误差,得到了光伏电站准确的模型参数。将该方法运用到贵州某实际光伏电站的并网性能测试中,验证在不同工况下电站的高低电压穿越能力,得到其准确的控制参数。结果表明:所提的参数辨识方法能准确地辨识系统在不同工况下高低电压穿越关键参数,且仿真与实测数据误差满足相关标准的技术要求,可用于工程实际计算。
In order to better avoid the grid disconnection caused by the grid faults of new energy power plants, verify the high and low voltage ride-through capability of photovoltaic power plants, and obtain accurate model control parameters, this paper proposes a key parameter identification method for photovoltaic power plants based on high and low voltage ride-through test measurement data, considering the characteristics of the entire fault ride-through process. Based on the measured data, a BPA model of the photovoltaic power plant is established. By conducting sensitivity analysis on the model parameters, key identification parameters are determined. A photovoltaic power plant model identification method based on an improved Salp Swarm Algorithm (SSA) with multiple strategies is proposed. The method continuously optimizes and updates the parameters to be identified and performs transient stability calculations. The error between the output of the simulation model and the measured data is calculated to obtain accurate model parameters for the photovoltaic power plant. This method is applied to the grid performance testing of an actual photovoltaic power plant in Guizhou, verifying the high and low voltage ride-through capability of the power plant under different operating conditions and obtaining accurate control parameters. The results show that the proposed parameter identification method can accurately identify the key parameters of high and low voltage ride-through under different operating conditions, and the error between the simulation and measured data meets the technical requirements of relevant standards, making it suitable for practical engineering calculations.

References

[1]  张智刚, 康重庆. 碳中和目标下构建新型电力系统的挑战与展望[J]. 中国电机工程学报, 2022, 42(8): 2806-2818.
[2]  康克佳. 我国可再生能源发电总装机突破14亿千瓦[N]. 中国城市报, 2023-12-04(A07).
[3]  王蒙, 张文朝, 汪莹, 等. 高比例光伏接入的电力系统暂态过电压控制策略[J]. 太阳能学报, 2023, 44(10): 148-155.
[4]  曹斌, 刘文焯, 原帅, 等. 基于低电压穿越试验的光伏发电系统建模研究[J]. 电力系统保护与控制, 2020, 48(18): 146-155.
[5]  周于清, 李大虎, 姚伟, 等. 受端近区光伏电站对LCC-HVDC系统稳定性影响分析[J]. 中国电力, 2024, 57(3): 170-182.
[6]  聂永辉, 张春雷, 高磊, 等. 基于改进鸡群算法的静止无功补偿器模型参数辨识方法[J]. 电网技术, 2019, 43(2): 731-738.
[7]  李立, 郑天悦, 黄世楼, 等. 基于扩展卡尔曼滤波的DFIG变流器控制系统参数辨识方法[J]. 电网与清洁能源, 2022, 38(12): 50-60.
[8]  韩伟, 王宏华, 王成亮, 等. 基于参数辨识的光伏组件故障诊断模型[J]. 电网技术, 2015, 39(5): 1198-1204.
[9]  易威, 杨家强, 张晓军. 一种基于改进型樽海鞘群算法的光伏电池参数辨识方法[J]. 电工技术, 2021(14): 58-61, 64.
[10]  孔祥平, 袁宇波, 阮思烨, 等. 面向故障暂态建模的光伏并网逆变器控制器参数辨识[J]. 电力系统保护与控制, 2017, 45(11): 65-72.
[11]  张路遥. 基于ISSA和IAHA算法的抽水蓄能机组调节系统参数辨识[D]: [硕士或博士学位论文]. 邯郸: 河北工程大学, 2023.
[12]  张铸, 张仕杰, 饶盛华, 等. 改进樽海鞘群算法的永磁同步电机多参数辨识[J]. 电机与控制学报, 2022, 26(8): 139-146.
[13]  王明超, 董佳圆, 李继影, 等. 基于ISSA的STATCOM模型参数解耦辨识研究[J]. 东北电力大学学报, 2020, 40(1): 81-89.
[14]  孙华东, 李佳豪, 李文锋, 等. 大规模电力系统仿真用新能源场站模型结构及建模方法研究(一): 模型结构[J]. 中国电机工程学报, 2023, 43(4): 1378-1388.
[15]  王春又, 束洪春, 孙士云, 等. 基于实测数据的双馈风电场集电线路时域距离保护[J]. 电网与清洁能源, 2020, 36(9): 113-121.
[16]  黄其新, 孙黎霞, 甄威, 等. 同步发电机参数辨识的蚁群算法及扰动分析[J]. 电力自动化设备, 2009, 29(11): 50-53.
[17]  梁成龙, 陈志环. 基于混合策略改进的樽海鞘群算法[J]. 控制与决策, 2024, 39(8): 2541-2550.
[18]  余紫康, 董红斌. 具有混合策略的樽海鞘群特征选择算法[J]. 智能系统学报, 2024, 19(3): 757-765.
[19]  申晋祥, 鲍美英, 张景安, 等. 基于改进樽海鞘群算法的特征选择方法[J]. 计算机工程与设计, 2023, 44(9): 2714-2721.
[20]  崔文璇, 张祎彤, 张梅洁. 基于Tent-Chebyshev切换的粒子群优化算法[J]. 航空计算技术, 2023, 53(5): 15-19.
[21]  Song, Z.H., Ren, C.L. and Meng, Z.Y. (2024) An Adaptive Differential Evolution with Opposition-Learning Based Diversity Enhancement. Expert Systems with Applications, 243, Article ID: 122942.
https://doi.org/10.1016/j.eswa.2023.122942
[22]  Mohamed, A., et al. (2024) Evolution-Based Energy-Efficient Data Collection System for UAV-Supported IoT: Differential Evolution with Population Size Optimization Mechanism. Expert Systems with Applications, 245, Article ID: 123082.
https://doi.org/10.1016/j.eswa.2023.123082
[23]  杨博, 段金航, 李密维, 等. 基于改进秃鹰优化算法的海上混合光伏-波浪能转换器阵列优化[J]. 电网技术, 2024, 48(6): 2480-2489.
[24]  孙惠娟, 宋煜钧, 陈俐, 等. 计及备用风险性的新型电力系统源网协同安全经济调度[J]. 电力自动化设备, 2024, 44(4): 135-142.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133