全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

计及源荷不确定性及阶梯型碳交易的虚拟电厂优化调度方法
Optimal Scheduling of Virtual Power Plants Accounting for Source Load Uncertainty and Stepped Carbon Trading

DOI: 10.12677/mos.2025.141006, PP. 50-64

Keywords: 虚拟电厂,源荷不确定性,Frank-Copula函数,碳捕集与封存,用户满意度;阶梯型碳交易,优化调度
Virtual Power Plant
, Source Load Uncertainty, Frank-Copula Function, Carbon Capture and Storage, Customer Satisfaction, Laddered Carbon Trading, Optimized Scheduling

Full-Text   Cite this paper   Add to My Lib

Abstract:

在风光等清洁能源渗透率及能源低碳化需求不断提高的背景下,如何精确模拟新能源出力不确定性及引导负荷侧柔性资源参与需求响应显得尤为重要。针对上述问题,本文提出一种计及源荷不确定性及阶梯型碳交易的虚拟电厂优化调度模型。首先,源侧基于Frank-Copula函数建立风光出力联合概率分布模型,采样约简得风光出力典型场景。其次,在多能耦合虚拟电厂中引入碳捕集与封存(carbon capture and storage, CCS)设备,降低碳排放,荷侧建立考虑柔性用户用能满意度的需求响应模型,以提升风光消纳。同时,引入阶梯型碳交易机制,建立源荷协同优化及低碳性改造的VPP日前优化调度模型。然后,采用梯形隶属度函数将多目标优化问题模糊化为单目标优化问题,调用CPLEX求解器求解。最后,通过算例分析验证本文方法的有效性。
In the context of increasing penetration of clean energy sources such as wind and solar power and the demand for decarbonization of energy sources, it is particularly important to accurately simulate the uncertainty of new energy output and guide the load-side flexible resources to participate in demand response. To address the above issues, this paper proposes an optimal scheduling model for virtual power plants that takes into account the source-load uncertainty and stepwise carbon trading. First, the source side establishes a joint probability distribution model of wind and solar power based on the Frank-Copula function, and samples the typical scenarios of wind and solar power. Second, carbon capture and storage (CCS) equipment is introduced into the multi-energy coupled virtual power plant to reduce carbon emissions, and a demand response model is established on the load side that takes into account the energy satisfaction of the flexible users to enhance wind and solar power consumption. At the same time, a stepwise carbon trading mechanism is introduced to establish a VPP day-ahead optimal scheduling model for source-load cooperative optimization and low-carbon transformation. Then, the multi-objective optimization problem is blurred into a single-objective optimization problem by using the trapezoidal affiliation function, and the CPLEX solver is invoked to solve the problem. Finally, the effectiveness of the method in this paper is verified by case analysis.

References

[1]  李家珏, 李平, 王刚, 张潇桐, 张涛, 李垚. 计及弃风消纳的热电联产系统的日前调度模型[J]. 太阳能学报, 2021, 42(9): 295-301.
[2]  周伟, 孙永辉, 谢东亮, 等. 计及改进阶梯型碳交易和热电联产机组灵活输出的园区综合能源系统低碳调度[J].电网技术, 2024, 48(1): 61-73.
[3]  骆钊, 罗蒙顺, 沈鑫, 等. 基于碳捕集-电转气的矿区综合能源系统协同优化调度[J]. 电力系统自动化, 2024, 48(3): 22-30.
[4]  赵振宇, 李炘薪. 基于阶梯碳交易的碳捕集电厂-电转气虚拟电厂低碳经济调度[J]. 发电技术, 2023, 44(6): 769-780.
[5]  Rahimi, M., et al. (2022) Two-Stage Interval Scheduling of Virtual Power Plant in Day-Ahead and Real-Time Markets Considering Compressed Air Energy Storage Wind Turbine. Journal of Energy Storage, 45, Article ID: 103599.
https://doi.org/10.1016/j.est.2021.103599
[6]  王佳惠, 牛玉广, 陈玥, 杜鸣. 电-碳联合市场下虚拟电厂主从博弈优化调度[J]. 电力自动化设备, 2023, 43(5): 235-242.
[7]  李翔宇, 赵冬梅. 分散架构下多虚拟电厂分布式协同优化调度[J]. 电工技术学报, 2023, 38(7): 1852-1863.
[8]  王瑞东, 吴杰康, 蔡志宏, 等. 含广义储能虚拟电厂电-气-热三阶段协同优化调度[J]. 电网技术, 2022, 46(5): 1857-1868.
[9]  袁桂丽, 贾新潮, 陈少梁, 董金凤. 虚拟电厂源-荷协调多目标优化调度[J]. 太阳能学报, 2021, 42(5): 105-112.
[10]  税纪钧, 彭道刚, 宋炎侃, 等. 计及风光不确定性含碳排放和碳惩罚的虚拟电厂优化调度策略[J]. 系统仿真学报, 2024, 36(2): 305-319.
https://doi.org/10.16182/j.issn1004731x.joss.23-0840
[11]  白凯峰, 顾洁, 彭虹桥, 朱彬若. 融合风光出力场景生成的多能互补微网系统优化配置[J]. 电力系统自动化, 2018, 42(15): 133-141.
[12]  张妍, 冷媛, 尚楠, 等. 考虑碳排放需求响应及碳交易的电力系统双层优化调度[J/OL]. 电力建设, 2024: 1-12.
http://kns.cnki.net/kcms/detail/11.2583.TM.20240126.1802.021.html, 2024-03-28.
[13]  李欣, 陈英彰, 李涵文, 等. 考虑碳交易的电-热综合能源系统两阶段鲁棒优化低碳经济调度[J/OL]. 电力建设, 2024: 1-15.
http://kns.cnki.net/kcms/detail/11.2583.TM.20240103.1347.004.html, 2024-03-28.
[14]  魏伟, 等. 考虑碳排放配额和碳交易的新能源电力系统日前优化调度[J]. 电网与清洁能源, 2024, 40(1): 130-136.
[15]  孙鑫, 魏文荣, 李琼林, 等. 计及不确定性的风储联合系统多时间尺度市场参与策略[J]. 电力自动化设备, 2024, 44(2): 18-25.
[16]  刘蓉晖, 王乐凯, 孙改平, 赵增凯, 林顺富. 考虑不确定性的风-光-储合作联盟参与含需求响应的主辅联合市场的竞价交易模型[J]. 电力系统保护与控制, 2023, 51(11): 96-107.
[17]  王金浩, 樊瑞, 肖萤, 贺丹, 韩肖清, 李伊竹林. 基于低碳需求响应的新型电力系统中源-网-荷-储协调的优化调度[J]. 太原理工大学学报, 2024, 55(1): 46-56.
[18]  任宇路, 程昱舒, 王书姝, 等. 考虑阶梯式碳交易机制的负荷侧灵活响应优化模型[J]. 电力系统及其自动化学报, 2023: 1-10.
https://doi.org/10.19635/j.cnki.csu-epsa.001379, 2024-03-28.
[19]  刘睿捷, 包哲静, 林振智. 考虑双层奖惩型碳交易机制的源网荷分布协同低碳经济调度[J]. 电力系统自动化, 2023: 1-22.
http://kns.cnki.net/kcms/detail/32.1180.TP.20231228.0016.002.html, 2024-03-28.
[20]  骆钊, 王菁慧, 王华, 赵伟杰, 杨林燕, 沈鑫. 考虑碳捕集和电转气的综合能源系统优化调度[J]. 电力自动化设备, 2023, 43(12): 127-134.
[21]  袁桂丽, 钟飞, 张睿, 周彤. 考虑碳捕集及需求响应的虚拟电厂热电联合优化调度[J]. 电网技术, 2023, 47(11): 4458-4467.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133