全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Theoretical Study of the Spectroscopic Properties of a Series of Makaluvamines in the Ultra-Violet Visible Range Using DFT (B3LYP) and TD-DFT Methods

DOI: 10.4236/sar.2025.81001, PP. 1-15

Keywords: Cancer, Makaluvamines, Density Functional Theory, Time-Dependent Density Functional Theory, Photosensitizer, Absorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

This work was carried out with the aim of contributing to the treatment of cancer. Cancer is one of the most common causes of death. It constitutes a public health problem. Photodynamic therapy (PDT) is one treatment option. This study contributes to the search for photosensitizing molecules used in PDT. Makaluvamines have shown interesting properties in the treatment of several human cancer cell lines. The present study analyzes the ultraviolet and visible absorption spectroscopic properties of a few Makaluvamines. These have been listed in the literature and can be in neutral or charged states (protonated and methylated). The investigation is based on quantum chemical calculations. Molecular geometries and vibrational frequencies have been calculated at the B3LYP/6-311++G(d,p) level. Absorption properties in the visible and ultraviolet spectral range are measured on optimized structures using time-dependent density functional theory (TD-DFT). The absorption spectra are obtained using the “Chemissian” software. The results of our calculations have allowed us to determine the absorption zones of the molecules studied, the energy gaps of the frontier orbitals, the main transitions associated with the absorption process, and their lifetimes. They have also identified four Makaluvamines (E, G, M, and L) that absorb in the therapeutic domain and may have photosensitizer properties.

References

[1]  Asrani, S.K., Devarbhavi, H., Eaton, J. and Kamath, P.S. (2019) Burden of Liver Diseases in the World. Journal of Hepatology, 70, 151-171.
https://doi.org/10.1016/j.jhep.2018.09.014
[2]  Raab, O. (1900) Uber die wirkung fluoreszierenden stoffen. Infusaria Zeitschrift Biologie, 39, 524.
[3]  Tappeiner, H.V. and Jesoniek, A. (1903) Therapeutische versuchi mit fluoreszeirender stoff. Münchener Medizinische Wochenschrift, 1, 2042-2044.
[4]  Dougherty, T.J., Kaufman, J.E. and Goldfarb, A. (1978) Photoirradiation Therapy for the Treatment of Malignant Tumors. Cancer Research, 38, 2628-2635.
[5]  Gunasekera, S.P., Zuleta, I.A., Longley, R.E., Wright, A.E. and Pomponi, S.A. (2003) Discorhabdins S, T, and U, New Cytotoxic Pyrroloiminoquinones from a Deep-Water Caribbean Sponge of the Genus Batzella. Journal of Natural Products, 66, 1615-1617.
https://doi.org/10.1021/np030292s
[6]  Radisky, D.C., Radisky, E.S., Barrows, L.R., Copp, B.R., Kramer, R.A. and Ireland, C.M. (1993) Novel Cytotoxic Topoisomerase II Inhibiting Pyrroloiminoquinones from Fijian Sponges of the Genus Zyzzya. Journal of the American Chemical Society, 115, 1632-1638.
https://doi.org/10.1021/ja00058a003
[7]  Muriel, B.-H., Céline, F., et al. (2007) La thérapie photodynamique. Lactualité Chimique, No. 308-309, 26.
[8]  Seck, I., Sall, M.L., Ndiaye, A., Ndoye, S.F., Ba, L.A. and Seck, M. (2023) Spectroscopic Electrochemical Properties and DFT Calculation of 1-Aryltriazenes. International Journal of Organic Chemistry, 13, 109-128.
https://doi.org/10.4236/ijoc.2023.134009
[9]  Matin, M.A., Bhattacharjee, S., Shaikh, M.A.A., Debnath, T. and Aziz, M.A. (2020) A Density Functional Theory (DFT) Investigation on the Structure and Spectroscopic Behavior of 2-Aminoterephthalic Acid and Its Sodium Salts. Green and Sustainable Chemistry, 10, 39-55.
https://doi.org/10.4236/gsc.2020.102004
[10]  Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., et al. (2009) Gaussian 09, Revision A.02. Gaussian, Inc.
[11]  Hohenberg, P. and Kohn, W. (1964) Inhomogeneous Electron Gas. Physical Review, 136, B864-B871.
https://doi.org/10.1103/physrev.136.b864
[12]  Casida, M.E., Jamorski, C., Casida, K.C. and Salahub, D.R. (1998) Molecular Excitation Energies to High-Lying Bound States from Time-Dependent Density-Functional Response Theory: Characterization and Correction of the Time-Dependent Local Density Approximation Ionization Threshold. The Journal of Chemical Physics, 108, 4439-4449.
https://doi.org/10.1063/1.475855
[13]  Tozer, D.J., Amos, R.D., Handy, N.C., Roos, B.O. and Serrano-Andres, L. (1999) Does Density Functional Theory Contribute to the Understanding of Excited States of Unsaturated Organic Compounds? Molecular Physics, 97, 859-868.
https://doi.org/10.1080/00268979909482888
[14]  Gross, E.K.U., Dobson, J.F. and Petersillka, M. (1996) Density Functional Theory. Springer.
[15]  Koch, W. and Holthausen, M.C. (1999) A Chemist’s Guide to Density Functional Theory. 2nd Edition, Wiley-VCH.
[16]  Casida, M.E. (1995) Time-Dependent Density Functional Response Theory for Molecules. In: Recent Advances in Computational Chemistry, World Scientific, 155-192.
https://doi.org/10.1142/9789812830586_0005
[17]  Li, M., Kou, L., Diao, L., Zhang, Q., Li, Z., Wu, Q., et al. (2015) Theoretical Study of Ws-9-Based Organic Sensitizers for Unusual Vis/Nir Absorption and Highly Efficient Dye-Sensitized Solar Cells. The Journal of Physical Chemistry C, 119, 9782-9790.
https://doi.org/10.1021/acs.jpcc.5b03667
[18]  Lukeš, V., Aquino, A. and Lischka, H. (2005) Theoretical Study of Vibrational and Optical Spectra of Methylene-Bridged Oligofluorenes. The Journal of Physical Chemistry A, 109, 10232-10238.
https://doi.org/10.1021/jp054248s
[19]  Laëtitia, D. (2007) Apport des spectroscopies moléculaires à l’étude des mécanismes de fixation des ions métalliques polluants sur les substances chimiques. Complexation de Al (III), Pb (II) et Zn (II) par des systèmes modèles. Université des Sciences et Technologie de Lille.
[20]  Wachsman, E.D. and Frank, C.W. (1988) Effect of Cure History on the Morphology of Polyimide: Fluorescence Spectroscopy as a Method for Determining the Degree of Cure. Polymer, 29, 1191-1197.
https://doi.org/10.1016/0032-3861(88)90043-2
[21]  Ranjan, S., Lin, S., Hwang, K., Chi, Y., Ching, W., Liu, C., et al. (2003) Realizing Green Phosphorescent Light-Emitting Materials from Rhenium (I) Pyrazolato Diimine Complexes. Inorganic Chemistry, 42, 1248-1255.
https://doi.org/10.1021/ic0259181
[22]  Hachi, M.S., El Khattabil, A., Fitril, A., et al. (2018) DFT and TD-DFT Studies of the π-Bridge Influence on the Photovoltaic Properties of Dyes Based on Thieno[2, 3-b]indole. Journal of Materials and Environmental Science, 9, 1200-1210.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133