Pseudoephedrine: A Review and Benefit-Risk Assessment with Reference to the Risk of Posterior Reversible Encephalopathy Syndrome (PRES) and Reversible Cerebral Vasoconstriction Syndrome (RCVS)
Pseudoephedrine (PSE) is a widely used nasal decongestant. A review by the European Medicines Agency has reported that PSE may be associated with risks of posterior reversible encephalopathy syndrome (PRES) and reversible cerebral vasoconstriction syndrome (RCVS). PRES and RCVS are rare but serious conditions that affect cerebral blood flow. This review discusses the pharmacology of PSE and potential risks for PRES and RCVS and concludes that considering the common use of PSE, with over 70 million packs of PSE taken each year in the European Union and the United Kingdom, and the rare occurrence of PRES and RCVS, that the risks of developing PRES/RCVS on exposure to PSE are likely to be very low.
References
[1]
(2024) 27.3.2024, E.C.o. Concerning, in the Framework of Article 31 of Directive 2001/83/EC of the European Parliament and of the Council, the Marketing Authorisations of Medicinal Products for Human Use Which Contain the Active Substance “Pseudoephedrine”.
[2]
EMA (2024) Pseudoephedrine-Containing Medicinal Products—Referral. https://www.ema.europa.eu/en/medicines/human/referrals/pseudoephedrine-containing-medicinal-products
[3]
Grimaldi-Bensouda, L., Begaud, B., Benichou, J., Nordon, C., Dialla, O., Morisot, N., et al. (2021) Decongestant Use and the Risk of Myocardial Infarction and Stroke: A Case-Crossover Study. Scientific Reports, 11, Article No. 4160. https://doi.org/10.1038/s41598-021-83718-8
[4]
Arama, V., Ganea, O., Neagu, D., Rosculet, C. and Arama, S.S. (2023) Update on the Efficiency and Safety of Orally Administered Nasal Decongestants. Romanian Journal of Infectious Diseases, 26, 125-134. https://doi.org/10.37897/rjid.2023.4.1
Głowacka, K. and Wiela-Hojeńska, A. (2021) Pseudoephedrine—Benefits and Risks. International Journal of Molecular Sciences, 22, Article 5146. https://doi.org/10.3390/ijms22105146
[9]
Johnson, D.A. and Hricik, J.G. (1993) The Pharmacology of α‐Adrenergic Decongestants. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 13, 110S-115S. https://doi.org/10.1002/j.1875-9114.1993.tb02779.x
[10]
Foley, K.F., Van Dort, M.E., Sievert, M.K., Ruoho, A.E. and Cozzi, N.V. (2002) Stereospecific Inhibition of Monoamine Uptake Transporters by Meta-Hydroxyephedrine Isomers. Journal of Neural Transmission, 109, 1229-1240. https://doi.org/10.1007/s00702-002-0695-6
[11]
Kobayashi, S., Endou, M., Sakuraya, F., Matsuda, N., Zhang, X., Azuma, M., et al. (2003) The Sympathomimetic Actions of l-Ephedrine and d-Pseudoephedrine: Direct Receptor Activation or Norepinephrine Release? Anesthesia & Analgesia, 97, 1239-1245. https://doi.org/10.1213/01.ane.0000092917.96558.3c
[12]
Salerno, S.M., Jackson, J.L. and Berbano, E.P. (2005) Effect of Oral Pseudoephedrine on Blood Pressure and Heart Rate: A Meta-Analysis. Archives of Internal Medicine, 165, 1686-1694. https://doi.org/10.1001/archinte.165.15.1686
[13]
Bamford, O.S. and Eccles, R. (1982) The Central Reciprocal Control of Nasal Vasomotor Oscillations. PflügersArchiv, 394, 139-143. https://doi.org/10.1007/bf00582915
[14]
Eccles, R. (1983) Sympathetic Control of Nasal Erectile Tissue. European Journal of Respiratory Diseases. Supplement, 128, 150-154.
[15]
Malm, L. (1973) Stimulation of Sympathetic Nerve Fibres to the Nose in Cats. Acta Oto-Laryngologica, 75, 519-526. https://doi.org/10.3109/00016487309139783
[16]
Malm, L. (1977) Sympathetic Influence on the Nasal Mucosa. Acta Oto-Laryngologica, 83, 20-21. https://doi.org/10.3109/00016487709128805
[17]
Eccles, R. and Lee, R.L. (1981) Nasal Vasomotor Oscillations in the Cat Associated with the Respiratory Rhythm. Acta Oto-Laryngologica, 92, 357-361. https://doi.org/10.3109/00016488109133272
[18]
Olsson, P. and Bende, M. (1986) Sympathetic Neurogenic Control of Blood Flow in Human Nasal Mucosa. Acta Oto-Laryngologica, 102, 482-487. https://doi.org/10.3109/00016488609119434
[19]
Lacroix, J.S., Stjärne, P., Änggård, A. and Lundberg, J.M. (1988) Sympathetic Vascular Control of the Pig Nasal Mucosa: (I) Increased Resistance and Capacitance Vessel Responses Upon Stimulation with Irregular Bursts Compared to Continuous Impulses. Acta Physiologica Scandinavica, 132, 83-90. https://doi.org/10.1111/j.1748-1716.1988.tb08301.x
[20]
Malcomson, K.G. (1959) The Vasomotor Activities of the Nasal Mucous Membrane. The Journal of Laryngology & Otology, 73, 73-98. https://doi.org/10.1017/s0022215100054980
[21]
Shaari, C.M. and Scherl, M.P. (1994) Nasal Obstruction and Horner’s Syndrome. Otolaryngology-Head and Neck Surgery, 111, 838-840. https://doi.org/10.1177/019459989411100625
[22]
Hamel, E. (2006) Perivascular Nerves and the Regulation of Cerebrovascular Tone. Journal of Applied Physiology, 100, 1059-1064. https://doi.org/10.1152/japplphysiol.00954.2005
[23]
Ter Laan, M., van Dijk, J.M.C., Elting, J.W.J., Staal, M.J. and Absalom, A.R. (2013) Sympathetic Regulation of Cerebral Blood Flow in Humans: A Review. British Journal of Anaesthesia, 111, 361-367. https://doi.org/10.1093/bja/aet122
[24]
Brassard, P., Tymko, M.M. and Ainslie, P.N. (2017) Sympathetic Control of the Brain Circulation: Appreciating the Complexities to Better Understand the Controversy. Autonomic Neuroscience, 207, 37-47. https://doi.org/10.1016/j.autneu.2017.05.003
[25]
Lassen, N.A. (1959) Cerebral Blood Flow and Oxygen Consumption in Man. Physiological Reviews, 39, 183-238. https://doi.org/10.1152/physrev.1959.39.2.183
[26]
Werler, M.M. (2006) Teratogen Update: Pseudoephedrine. Birth Defects Research Part A: Clinical and Molecular Teratology, 76, 445-452. https://doi.org/10.1002/bdra.20255
[27]
Eccles, R., Jawad, M.S.M., Jawad, S.S.M., Angello, J.T. and Druce, H.M. (2005) Efficacy and Safety of Single and Multiple Doses of Pseudoephedrine in the Treatment of Nasal Congestion Associated with Common Cold. American Journal of Rhinology, 19, 25-31. https://doi.org/10.1177/194589240501900105
[28]
Eccles, R., Jawad, M., Jawad, S., Ridge, D., North, M., Jones, E., et al. (2006) Efficacy of a Paracetamol-Pseudoephedrine Combination for Treatment of Nasal Congestion and Pain-Related Symptoms in Upper Respiratory Tract Infection. Current Medical Research and Opinion, 22, 2411-2418. https://doi.org/10.1185/030079906x154105
[29]
Voelker, M., Eccles, R. and Gessner, U. (2018) Aspirin Plus Pseudoephedrine (Aspirin Complex) for the Treatment of Symptoms of Upper Respiratory Tract Infection. Open Journal of Respiratory Diseases, 7, 25-40. https://doi.org/10.4236/ojrd.2017.71004
[30]
Latte, J., Taverner, D., Slobodian, P. and Shakib, S. (2004) A Randomized, Double‐Blind, Placebo‐Controlled Trial of Pseudoephedrine in Coryza. Clinical and Experimental Pharmacology and Physiology, 31, 429-432. https://doi.org/10.1111/j.1440-1681.2004.04013.x
[31]
Sperber, S.J. (2000) Effectiveness of Pseudoephedrine Plus Acetaminophen for Treatment of Symptoms Attributed to the Paranasal Sinuses Associated with the Common Cold. Archives of Family Medicine, 9, 979-985. https://doi.org/10.1001/archfami.9.10.979
[32]
Stewart, M.G., Ferguson, B. and Fromer, L. (2010) Epidemiology and Burden of Nasal Congestion. International Journal of General Medicine, 3, 37-45. https://doi.org/10.2147/ijgm.s8077
[33]
Eccles, R. (2023) Common Cold. Frontiers in Allergy, 4, Article 1224988. https://doi.org/10.3389/falgy.2023.1224988
[34]
Eccles, R. (2011) Mechanisms of the Symptoms of Rhinosinusitis. Rhinology, 49, 131-138.
[35]
Davis, S.S. and Eccles, R. (2004) Nasal Congestion: Mechanisms, Measurement and Medications. Core Information for the Clinician. Clinical Otolaryngology and Allied Sciences, 29, 659-666. https://doi.org/10.1111/j.1365-2273.2004.00885.x
[36]
Shedden, A. (2005) Impact of Nasal Congestion on Quality of Life and Work Productivity in Allergic Rhinitis. Treatments in Respiratory Medicine, 4, 439-446. https://doi.org/10.2165/00151829-200504060-00007
[37]
Eccles, R. (1994) Menthol and Related Cooling Compounds. Journal of Pharmacy and Pharmacology, 46, 618-630. https://doi.org/10.1111/j.2042-7158.1994.tb03871.x
[38]
Clarke, R.W., Cook, J.A. and Jones, A.S. (1995) The Effect of Nasal Mucosal Vasoconstriction on Nasal Airflow Sensation. Clinical Otolaryngology, 20, 72-73. https://doi.org/10.1111/j.1365-2273.1995.tb00016.x
Eccles, R. (2000) Role of Cold Receptors and Menthol in Thirst, the Drive to Breathe and Arousal. Appetite, 34, 29-35. https://doi.org/10.1006/appe.1999.0291
[41]
Gwaltney, J.M., Phillips, C.D., Miller, R.D. and Riker, D.K. (1994) Computed Tomographic Study of the Common Cold. New England Journal of Medicine, 330, 25-30. https://doi.org/10.1056/nejm199401063300105
[42]
Márquez, S. (2008) The Paranasal Sinuses: The Last Frontier in Craniofacial Biology. The Anatomical Record, 291, 1350-1361. https://doi.org/10.1002/ar.20791
[43]
Kaiser, L., Lew, D., Hirschel, B., Auckenthaler, R., Morabia, A., Bénédict, P., et al. (1998) Radiological Maxillary Sinusitis in Patients with Common Cold. The Journal of Family Practice, 47, 72-74.
[44]
Whittet, H.B. (1992) Infraorbital Nerve Dehiscence: The Anatomic Cause of Maxillary Sinus “Vacuum Headache”? Otolaryngology—Head and Neck Surgery, 107, 21-28. https://doi.org/10.1177/019459989210700104
[45]
Eccles, R. (2005) Understanding the Symptoms of the Common Cold and Influenza. The Lancet Infectious Diseases, 5, 718-725. https://doi.org/10.1016/s1473-3099(05)70270-x
[46]
LaForce, C., Gentile, D.A. and Skoner, D.P. (2008) A Randomized, Double-Blind, Parallel-Group, Multicenter, Placebo-Controlled Study of the Safety and Efficacy of Extended-Release Guaifenesin/Pseudoephedrine Hydrochloride for Symptom Relief as an Adjunctive Therapy to Antibiotic Treatment of Acute Respiratory Infections. Postgraduate Medicine, 120, 53-59. https://doi.org/10.3810/pgm.2008.07.1791
[47]
McBride, T.P., Doyle, W.J., Hayden, F.G. and Gwaltney, J.M. (1989) Alterations of the Eustachian Tube, Middle Ear, and Nose in Rhinovirus Infection. Archives of Otolaryngology—Head and Neck Surgery, 115, 1054-1059. https://doi.org/10.1001/archotol.1989.01860330044014
[48]
Knight, L.C., Eccles, R. and Morris, S. (1992) Seasonal Allergic Rhinitis and Its Effects on Eustachian Tube Function and Middle Ear Pressure. Clinical Otolaryngology, 17, 308-312. https://doi.org/10.1111/j.1365-2273.1992.tb01002.x
[49]
Buchman, C.A., Doyle, W.J., Skoner, D., Fireman, P. and Gwaltney, J.M. (1994) Otologic Manifestations of Experimental Rhinovirus Infection. The Laryngoscope, 104, 1295-1299. https://doi.org/10.1288/00005537-199410000-00021
[50]
Doyle, W.J., Buchman, C.A., Skoner, D.P., Seroky, J.T., Hayden, F. and Fireman, P. (1994) Nasal and Otologic Effects of Experimental Influenza a Virus Infection. Annals of Otology, Rhinology & Laryngology, 103, 59-69. https://doi.org/10.1177/000348949410300111
[51]
Dempsey, J.E. and Jackson, R.T. (1972) Pseudoephedrine and the Dog’s Eustachian Tube. Archives of Otolaryngology—Head and Neck Surgery, 96, 216-219. https://doi.org/10.1001/archotol.1972.00770090338002
[52]
Cantekin, E.I., Rockette, H.E., Bluestone, C.D. and Beery, Q.C. (1980) Effect of Decongestant with or without Antihistamine on Eustachian Tube Function. Annals of Otology, Rhinology & Laryngology, 89, 290-295. https://doi.org/10.1177/00034894800890s368
[53]
Triplett, J.D., Kutlubaev, M.A., Kermode, A.G. and Hardy, T. (2022) Posterior Reversible Encephalopathy Syndrome (PRES): Diagnosis and Management. Practical Neurology, 22, 183-189. https://doi.org/10.1136/practneurol-2021-003194
[54]
Brewer, J., Owens, M.Y., Wallace, K., Reeves, A.A., Morris, R., Khan, M., et al. (2013) Posterior Reversible Encephalopathy Syndrome in 46 of 47 Patients with Eclampsia. American Journal of Obstetrics and Gynecology, 208, 468.e1-468.e6. https://doi.org/10.1016/j.ajog.2013.02.015
[55]
Stokum, J.A., Gerzanich, V. and Simard, J.M. (2015) Molecular Pathophysiology of Cerebral Edema. Journal of Cerebral Blood Flow & Metabolism, 36, 513-538. https://doi.org/10.1177/0271678x15617172
[56]
Balcerac, A., Bihan, K., Psimaras, D., Lebrun-Vignes, B., Salem, J. and Weiss, N. (2022) Drugs Associated with Posterior Reversible Encephalopathy Syndrome, a Worldwide Signal Detection Study. Journal of Neurology, 270, 975-985. https://doi.org/10.1007/s00415-022-11450-y
[57]
Ribas, M.Z., Paticcié, G.F., de Medeiros, S.D.P., de Oliveira Veras, A., Noleto, F.M. and dos Santos, J.C.C. (2023) Reversible Cerebral Vasoconstriction Syndrome: Literature Review. The Egyptian Journal of Neurology, Psychiatry and Neurosurgery, 59, Article No. 5. https://doi.org/10.1186/s41983-023-00607-9
[58]
Reece, M.D., Taylor, R.R., Song, C. and Gavegnano, C. (2021) Targeting Macrophage Dysregulation for Viral Infections: Novel Targets for Immunomodulators. Frontiers in Immunology, 12, Article 768695. https://doi.org/10.3389/fimmu.2021.768695
[59]
Calabrese, L.H., Dodick, D.W., Schwedt, T.J. and Singhal, A.B. (2007) Narrative Review: Reversible Cerebral Vasoconstriction Syndromes. Annals of Internal Medicine, 146, 34-44. https://doi.org/10.7326/0003-4819-146-1-200701020-00007
[60]
Ducros, A. (2012) Reversible Cerebral Vasoconstriction Syndrome. The Lancet Neurology, 11, 906-917. https://doi.org/10.1016/s1474-4422(12)70135-7
[61]
Joyce, N., et al. (2020) Over the Counter Pres—A Case of Posterior Reversible Encephalopathy Syndrome Following Oral Pseudoephedrine Use. International Journal of Stroke, 1, 684.
[62]
Shalchian, S. and De Wispelaere, F. (2007) Call‐Fleming Syndrome: Another Case Report. Headache: The Journal of Head and Face Pain, 47, 909-910. https://doi.org/10.1111/j.1526-4610.2007.00827.x