全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Links of Terrestrial Environment with Solar Activity and Solar and Planetary Orbital Motion

DOI: 10.4236/acs.2025.151004, PP. 72-105

Keywords: Terrestrial Temperature, Terrestrial Sea Level, Terrestrial Ice Areas, El Nino Southern Oscillation, Volcanic Eruptions, Underwater Volcanic Eruptions, Solar Magnetic Field, Solar Activity, Solar Inertial Motion, Correlation, Jupiter Revolution Period, Lunar Perigee Period

Full-Text   Cite this paper   Add to My Lib

Abstract:

In this paper we emphasize statistical links between solar activity and orbital motion with various terrestrial phenomena: terrestrial temperature, sea levels, ice areas, frequencies of volcanic eruptions, and Oceanic Nino Index (ONI). Solar activity links. The solar activity indices are expressed through the averaged sunspot numbers SSN and the summary curve of eigen vectors of the solar background magnetic field (SBMF). The terrestrial temperature (GLB dataset), global sea level, and volcanic eruption frequencies are shown from the wavelet analysis to have a clear link to the SBMF index, which has the same significant period of 21.4 years. The ice and snow areas in the Northern hemisphere are found to vary with a period of 10.7 years equal to the usual sunspot activity cycle while in the Southern hemispheres, no links to solar activity are detected. Solar orbital motion links. The variations of total solar irradiance (TSI) measured from the abundance of 14C isotope during the Holocene are shown to have a similar period of 2200-2300 years (Hallstatt’s cycle) as the solar inertial motion (SIM) induced by the gravitation of large planets, In the current millennium the amount of TSI deposited on Earth in the March-September to Northern hemisphere is ≈1.2% higher than in the September to March in the Southern hemisphere. The wavelet analysis of ONI revealed the two significant periods of 4.5 and 12 years. The first one is shown to have a link to the lunar perigee period variations while the second period is linked to the Jupiter period of revolution about the Sun whose gravitation seems to trigger terrestrial tectonic processes leading to volcanic eruptions. The ONI variation is noticeably linked to the occurrence of underwater volcanic eruptions (correlation of 25%), which, in turn, are linked to the tidal forces of Jupiter, the Moon and the Sun in its inertial motion. Joint effects of the solar activity and the solar and planetary orbital motion are likely to govern the current changes in the terrestrial environment defining continuing climate change.

References

[1]  Akasofu, S. (2010) On the Recovery from the Little Ice Age. Natural Science, 2, 1211-1224.
https://doi.org/10.4236/ns.2010.211149
[2]  Hansen, J., Ruedy, R., Sato, M. and Lo, K. (2010) Global Surface Temperature Change. Reviews of Geophysics, 48.
https://doi.org/10.1029/2010rg000345
[3]  Méndez, C., Simpson, N., Johnson, F. and Birt, A. (2023) Climate Change 2023: Synthesis Report (Full Volume) Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. 10.59327/IPCC/AR6-9789291691647-IPCC (2023).
https://www.researchgate.net/publication/372768149_Climate_Change_2023_Synthesis_Report_Full_Volume_Contribution_of_Working_Groups_I_II_and_III_to_the_Sixth_Assessment_Report_of_the_Intergovernmental_Panel_on_Climate_Change/citation/download
[4]  Yim, S., Wang, B., Liu, J. and Wu, Z. (2013) A Comparison of Regional Monsoon Variability Using Monsoon Indices. Climate Dynamics, 43, 1423-1437.
https://doi.org/10.1007/s00382-013-1956-9
[5]  Trenberth, K.E. and Hoar, T.J. (1997) El Niño and Climate Change. Geophysical Research Letters, 24, 3057-3060.
https://doi.org/10.1029/97gl03092
[6]  Ashok, K., Guan, Z. and Yamagata, T. (2001) Impact of the Indian Ocean Dipole on the Relationship between the Indian Monsoon Rainfall and Enso. Geophysical Research Letters, 28, 4499-4502.
https://doi.org/10.1029/2001gl013294
[7]  Ashok, K. and Yamagata, T. (2009) The El Niño with a Difference. Nature, 461, 481-484.
https://doi.org/10.1038/461481a
[8]  Yeh, S., Kug, J., Dewitte, B., Kwon, M., Kirtman, B.P. and Jin, F. (2009) Erratum: El Niño in a Changing Climate. Nature, 462, 674-674.
https://doi.org/10.1038/nature08546
[9]  Roy, I., Asikainen, T., Maliniemi, V. and Mursula, K. (2016) Comparing the Influence of Sunspot Activity and Geomagnetic Activity on Winter Surface Climate. Journal of Atmospheric and Solar-Terrestrial Physics, 149, 167-179.
https://doi.org/10.1016/j.jastp.2016.04.009
[10]  Yu, J. and Kao, H. (2007) Decadal Changes of ENSO Persistence Barrier in SST and Ocean Heat Content Indices: 1958-2001. Journal of Geophysical Research: Atmospheres, 112, D13106.
https://doi.org/10.1029/2006jd007654
[11]  Roy, I. (2018) Addressing on Abrupt Global Warming, Warming Trend Slowdown and Related Features in Recent Decades. Frontiers in Earth Science, 6, Article No. 136.
https://doi.org/10.3389/feart.2018.00136
[12]  Kug, J., Jin, F. and An, S. (2009) Two Types of El Niño Events: Cold Tongue El Niño and Warm Pool El Niño. Journal of Climate, 22, 1499-1515.
https://doi.org/10.1175/2008jcli2624.1
[13]  Yu, J. and Kim, S.T. (2010) Identification of Central-Pacific and Eastern-Pacific Types of ENSO in CMIP3 Models. Geophysical Research Letters, 37, L15705.
https://doi.org/10.1029/2010gl044082
[14]  Zharkova, V.V., Shepherd, S.J., Zharkov, S.I. and Popova, E. (2019) Retracted Article: Oscillations of the Baseline of Solar Magnetic Field and Solar Irradiance on a Millennial Timescale. Scientific Reports, 9, Article No. 9197.
https://doi.org/10.1038/s41598-019-45584-3
[15]  Zharkova, V. (2021) Millennial Oscillations of Solar Irradiance and Magnetic Field in 600-2600. In: Bevelacqua, J., Ed., Solar System Planets and Exoplanets, IntechOpen, 27-60.
https://doi.org/10.5772/intechopen.96450
[16]  SILSO World Data Center (2021) The International Sunspot Number. International Sunspot Number Monthly Bulletin and Online Catalogue.
[17]  Zharkova, V.V., Shepherd, S.J., Popova, E. and Zharkov, S.I. (2015) Heartbeat of the Sun from Principal Component Analysis and Prediction of Solar Activity on a Millenium Timescale. Scientific Reports, 5, Article No. 15689.
https://doi.org/10.1038/srep15689
[18]  Zharkova, V.V. and Shepherd, S.J. (2022) Eigenvectors of Solar Magnetic Field in Cycles 21-24 and Their Links to Solar Activity Indices. Monthly Notices of the Royal Astronomical Society, 512, 5085-5099.
https://doi.org/10.1093/mnras/stac781
[19]  Zharkova, V.V., Vasilieva, I., Popova, E. and Shepherd, S.J. (2023) Comparison of Solar Activity Proxies: Eigenvectors versus Averaged Sunspot Numbers. Monthly Notices of the Royal Astronomical Society, 521, 6247-6265.
https://doi.org/10.1093/mnras/stad1001
[20]  Eddy, J.A. (1976) The Maunder Minimum. Science, 192, 1189-1202.
https://doi.org/10.1126/science.192.4245.1189
[21]  Zharkova, V. (2020) Modern Grand Solar Minimum Will Lead to Terrestrial Cooling. Temperature, 7, 217-222.
https://doi.org/10.1080/23328940.2020.1796243
[22]  Lean, J., Beer, J. and Bradley, R. (1995) Reconstruction of Solar Irradiance since 1610: Implications for Climate Change. Geophysical Research Letters, 22, 3195-3198.
https://doi.org/10.1029/95gl03093
[23]  Easterbrook, D.J. (2016) Evidence-Based Climate Science. Elsevier.
[24]  Parker, D.E., Jones, P.D., Folland, C.K. and Bevan, A. (1994) Interdecadal Changes of Surface Temperature since the Late Nineteenth Century. Journal of Geophysical Research: Atmospheres, 99, 14373-14399.
https://doi.org/10.1029/94jd00548
[25]  Zharkova, V.V. and Vasilieva, I. (2023) Terrestrial Temperature, Sea Levels and Ice Area Links with Solar Activity and Solar Orbital Motion. Natural Science, 15, 233-255.
[26]  Zharkova, V.V., Vasilieva, I., Shepherd, S.J. and Popova, E. (2023) Periodicities of Solar Activity and Solar Radiation Derived from Observations and Their Links with the Terrestrial Environment. Natural Science, 15, 111-147.
[27]  Steinhilber, F., Beer, J. and Fröhlich, C. (2009) Total Solar Irradiance during the Holocene. Geophysical Research Letters, 36, L19704.
https://doi.org/10.1029/2009gl040142
[28]  Steinhilber, F., Abreu, J.A., Beer, J., Brunner, I., Christl, M., Fischer, H., et al. (2012) 9,400 Years of Cosmic Radiation and Solar Activity from Ice Cores and Tree Rings. Proceedings of the National Academy of Sciences of the United States of America, 109, 5967-5971.
https://doi.org/10.1073/pnas.1118965109
[29]  Roy, I. and Haigh, J.D. (2010) Solar Cycle Signals in Sea Level Pressure and Sea Surface Temperature. Atmospheric Chemistry and Physics, 10, 3147-3153.
https://doi.org/10.5194/acp-10-3147-2010
[30]  Christoforou, P. and Hameed, S. (1997) Solar Cycle and the Pacific “Centers of Action”. Geophysical Research Letters, 24, 293-296.
https://doi.org/10.1029/97gl00017
[31]  van Loon, H. and Meehl, G.A. (2008) The Response in the Pacific to the Sun’s Decadal Peaks and Contrasts to Cold Events in the Southern Oscillation. Journal of Atmospheric and Solar-Terrestrial Physics, 70, 1046-1055.
https://doi.org/10.1016/j.jastp.2008.01.009
[32]  Ashok, K., Behera, S.K., Rao, S.A., Weng, H. and Yamagata, T. (2007) El Niño Modoki and Its Possible Teleconnection. Journal of Geophysical Research: Oceans, 112, C11007.
https://doi.org/10.1029/2006jc003798
[33]  Chang, Y., Chen, M., Yokoyama, Y., Matsuzaki, H., Thompson, W.G., Kao, S., et al. (2009) Monsoon Hydrography and Productivity Changes in the East China Sea during the Past 100,000 Years: Okinawa Trough Evidence (MD012404). Paleoceanography, 24, PA3208.
https://doi.org/10.1029/2007pa001577
[34]  Hao, T., Liu, X., Ogg, J., Liang, Z., Xiang, R., Zhang, X., et al. (2017) Intensified Episodes of East Asian Winter Monsoon during the Middle through Late Holocene Driven by North Atlantic Cooling Events: High-Resolution Lignin Records from the South Yellow Sea, China. Earth and Planetary Science Letters, 479, 144-155.
https://doi.org/10.1016/j.epsl.2017.09.031
[35]  Moore, J.C., Grinsted, A., Zwinger, T. and Jevrejeva, S. (2013) Semiempirical and Process-Based Global Sea Level Projections. Reviews of Geophysics, 51, 484-522.
https://doi.org/10.1002/rog.20015
[36]  Fyke, J., Sergienko, O., Löfverström, M., Price, S. and Lenaerts, J.T.M. (2018) An Overview of Interactions and Feedbacks between Ice Sheets and the Earth System. Reviews of Geophysics, 56, 361-408.
https://doi.org/10.1029/2018rg000600
[37]  Turner, J., Orr, A., Gudmundsson, G.H., Jenkins, A., Bingham, R.G., Hillenbrand, C., et al. (2017) Atmosphere-Ocean-Ice Interactions in the Amundsen Sea Embayment, West Antarctica. Reviews of Geophysics, 55, 235-276.
https://doi.org/10.1002/2016rg000532
[38]  Pritchard, H.D., Arthern, R.J., Vaughan, D.G. and Edwards, L.A. (2009) Extensive Dynamic Thinning on the Margins of the Greenland and Antarctic Ice Sheets. Nature, 461, 971-975.
https://doi.org/10.1038/nature08471
[39]  Rignot, E., Bamber, J.L., van den Broeke, M.R., Davis, C., Li, Y., van de Berg, W.J., et al. (2008) Recent Antarctic Ice Mass Loss from Radar Interferometry and Regional Climate Modelling. Nature Geoscience, 1, 106-110.
https://doi.org/10.1038/ngeo102
[40]  Joughin, I., Smith, B.E. and Holland, D.M. (2010) Sensitivity of 21st Century Sea Level to Ocean-Induced Thinning of Pine Island Glacier, Antarctica. Geophysical Research Letters, 37, L20502.
https://doi.org/10.1029/2010gl044819
[41]  Favier, L., Durand, G., Cornford, S.L., Gudmundsson, G.H., Gagliardini, O., Gillet-Chaulet, F., et al. (2014) Retreat of Pine Island Glacier Controlled by Marine Ice-Sheet Instability. Nature Climate Change, 4, 117-121.
https://doi.org/10.1038/nclimate2094
[42]  Park, J.W., Gourmelen, N., Shepherd, A., Kim, S.W., Vaughan, D.G. and Wingham, D.J. (2013) Sustained Retreat of the Pine Island Glacier. Geophysical Research Letters, 40, 2137-2142.
https://doi.org/10.1002/grl.50379
[43]  Wingham, D.J., Wallis, D.W. and Shepherd, A. (2009) Spatial and Temporal Evolution of Pine Island Glacier Thinning, 1995-2006. Geophysical Research Letters, 36, L17501.
https://doi.org/10.1029/2009gl039126
[44]  Cazenave, A., Dieng, H., Meyssignac, B., von Schuckmann, K., Decharme, B. and Berthier, E. (2014) The Rate of Sea-Level Rise. Nature Climate Change, 4, 358-361.
https://doi.org/10.1038/nclimate2159
[45]  Rahmstorf, S. (2007) A Semi-Empirical Approach to Projecting Future Sea-Level Rise. Science, 315, 368-370.
https://doi.org/10.1126/science.1135456
[46]  Nerem, R.S., Beckley, B.D., Fasullo, J.T., Hamlington, B.D., Masters, D. and Mitchum, G.T. (2018) Climate-Change-Driven Accelerated Sea-Level Rise Detected in the Altimeter Era. Proceedings of the National Academy of Sciences of the United States of America, 115, 2022-2025.
https://doi.org/10.1073/pnas.1717312115
[47]  Storch, H.V., Zorita, E. and González-Rouco, J.F. (2008) Relationship between Global Mean Sea-Level and Global Mean Temperature in a Climate Simulation of the Past Millennium. Ocean Dynamics, 58, 227-236.
https://doi.org/10.1007/s10236-008-0142-9
[48]  Grinsted, A., Moore, J.C. and Jevrejeva, S. (2009) Reconstructing Sea Level from Paleo and Projected Temperatures 200 to 2100 AD. Climate Dynamics, 34, 461-472.
https://doi.org/10.1007/s00382-008-0507-2
[49]  Vermeer, M. and Rahmstorf, S. (2009) From the Cover: Global Sea Level Linked to Global Temperature. Proceedings of the National Academy of Sciences of the United States of America, 106, 21527-21532.
https://doi.org/10.1073/pnas.0907765106
[50]  Sannino, G., Carillo, A., Iacono, R., Napolitano, E., Palma, M., Pisacane, G., et al. (2022) Modelling Present and Future Climate in the Mediterranean Sea: A Focus on Sea-Level Change. Climate Dynamics, 59, 357-391.
https://doi.org/10.1007/s00382-021-06132-w
[51]  Oman, L., Robock, A. and Stenchikov, G. (2003) Comparing the Climatic Impact from Low Latitude versus High Latitude Volcanic Eruptions. AGU Fall Meeting Abstracts, San Francisco, 8-12 December 2003.
[52]  Emile-Geay, J., Seager, R., Cane, M.A., Cook, E.R. and Haug, G.H. (2008) Volcanoes and ENSO over the Past Millennium. Journal of Climate, 21, 3134-3148.
https://doi.org/10.1175/2007jcli1884.1
[53]  Salby, M.L., Titova, E.A. and Deschamps, L. (2012) Changes of the Antarctic Ozone Hole: Controlling Mechanisms, Seasonal Predictability, and Evolution. Journal of Geophysical Research: Atmospheres, 117, D10111.
https://doi.org/10.1029/2011jd016285
[54]  Koutsoyiannis, D., Onof, C., Kundzewicz, Z.W. and Christofides, A. (2023) On Hens, Eggs, Temperatures and CO2: Causal Links in Earth’s Atmosphere. Sci, 5, Article No. 35.
https://doi.org/10.3390/sci5030035
[55]  Torrence, C. and Compo, G.P. (1998) A Practical Guide to Wavelet Analysis. Bulletin of the American Meteorological Society, 79, 61-78.
https://doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
[56]  Lenssen, N.J.L., Schmidt, G.A., Hansen, J.E., Menne, M.J., Persin, A., Ruedy, R., et al. (2019) Improvements in the GISTEMP Uncertainty Model. Journal of Geophysical Research: Atmospheres, 124, 6307-6326.
https://doi.org/10.1029/2018jd029522
[57]  Frederikse, T., Landerer, F., Caron, L., Adhikari, S., Parkes, D., Humphrey, V.W., et al. (2020) The Causes of Sea-Level Rise since 1900. Nature, 584, 393-397.
https://doi.org/10.1038/s41586-020-2591-3
[58]  Church, J.A. and White, N.J. (2006) A 20th Century Acceleration in Global Sea-Level Rise. Geophysical Research Letters, 33, L01602.
https://doi.org/10.1029/2005gl024826
[59]  Holgate, S.J. and Woodworth, P.L. (2004) Evidence for Enhanced Coastal Sea Level Rise during the 1990s. Geophysical Research Letters, 31, L07305.
https://doi.org/10.1029/2004gl019626
[60]  Vasilieva, I. and Zharkova, V. (2023) Terrestrial Volcanic Eruptions and Their Association with Solar Activity. Global Journal of Science Frontier Research, 23, 22-43.
[61]  Velasco Herrera, V.M., Soon, W. and Legates, D.R. (2021) Does Machine Learning Reconstruct Missing Sunspots and Forecast a New Solar Minimum? Advances in Space Research, 68, 1485-1501.
https://doi.org/10.1016/j.asr.2021.03.023
[62]  Le Mouël, J.L., Lopes, F. and Courtillot, V. (2020) Characteristic Time Scales of Decadal to Centennial Changes in Global Surface Temperatures over the Past 150 Years. Earth and Space Science, 7, e00671.
https://doi.org/10.1029/2019ea000671
[63]  Stothers, R.B. (1989) Volcanic Eruptions and Solar Activity. Journal of Geophysical Research: Solid Earth, 94, 17371-17381.
https://doi.org/10.1029/jb094ib12p17371
[64]  Maezawa, K. (1974) Dependence of the Magnetopause Position on the Southward Interplanetary Magnetic Field. Planetary and Space Science, 22, 1443-1453.
https://doi.org/10.1016/0032-0633(74)90040-3
[65]  Perreault, P. and Akasofu, S. (1978) A Study of Geomagnetic Storms. Geophysical Journal International, 54, 547-573.
https://doi.org/10.1111/j.1365-246x.1978.tb05494.x
[66]  Stauning, P. (1994) Coupling of IMF by Variations into the Polar Ionospheres through Interplanetary Field-Aligned Currents. Journal of Geophysical Research: Space Physics, 99, 17309-17322.
https://doi.org/10.1029/94ja00927
[67]  Stauning, P., Clauer, C.R., Rosenberg, T.J., Friis-Christensen, E. and Sitar, R. (1995) Observations of Solar-Wind-Driven Progression of Interplanetary Magnetic Field Bγ-Related Dayside Ionospheric Disturbances. Journal of Geophysical Research: Space Physics, 100, 7567-7585.
https://doi.org/10.1029/94ja01825
[68]  Gonzalez, W.D., Tsurutani, B.T. and Clúa de Gonzalez, A.L. (1999) Interplanetary Origin of Geomagnetic Storms. Space Science Reviews, 88, 529-562.
https://doi.org/10.1023/a:1005160129098
[69]  Prosovetsky, D.V. and Myagkova, I.N. (2011) The Correlation between Geomagnetic Disturbances and Topology of Quasi-Open Structures in the Solar Magnetic Field. Geomagnetism and Aeronomy, 51, 1078-1082.
https://doi.org/10.1134/s0016793211080342
[70]  Charvátová, I. (2000) Can Origin of the 2400-Year Cycle of Solar Activity Be Caused by Solar Inertial Motion? Annales Geophysicae, 18, 399-405.
https://doi.org/10.1007/s005850050897
[71]  Paluš, M., Kurths, J., Schwarz, U., Seehafer, N., Novotná, D. and Charvátová, I. (2007) The Solar Activity Cycle Is Weakly Synchronized with the Solar Inertial Motion. Physics Letters A, 365, 421-428.
https://doi.org/10.1016/j.physleta.2007.01.039
[72]  Perminov, A.S. and Kuznetsov, E.D. (2018) Orbital Evolution of the Sun-Jupiter-Sat-rn-Uranus-Neptune Four-Planet System on Long-Time Scales. Solar System Research, 52, 241-259.
https://doi.org/10.1134/s0038094618010070
[73]  Connolly, R., Soon, W., Connolly, M., Baliunas, S., Berglund, J., Butler, C.J., et al. (2023) Challenges in the Detection and Attribution of Northern Hemisphere Surface Temperature Trends since 1850. Research in Astronomy and Astrophysics, 23, Article ID: 105015.
https://doi.org/10.1088/1674-4527/acf18e
[74]  Soon, W., Connolly, R., Connolly, M., Akasofu, S., Baliunas, S., Berglund, J., et al. (2023) The Detection and Attribution of Northern Hemisphere Land Surface Warming (1850-2018) in Terms of Human and Natural Factors: Challenges of Inadequate Data. Climate, 11, Article No. 179.
https://doi.org/10.3390/cli11090179
[75]  van Westen, R.M., Kliphuis, M. and Dijkstra, H.A. (2024) Physics-Based Early Warning Signal Shows That AMOC Is on Tipping Course. Science Advances, 10, eadk1189.
https://doi.org/10.1126/sciadv.adk1189
[76]  Haigh, I.D., Eliot, M. and Pattiaratchi, C. (2011) Global Influences of the 18.61 Year Nodal Cycle and 8.85 Year Cycle of Lunar Perigee on High Tidal Levels. Journal of Geophysical Research, 116, C06025.
https://doi.org/10.1029/2010jc006645
[77]  Zharkova, V.V. and Vasilieva, I. (2024) ENSO Index Variations and Links with Solar and Volcanic Activity. Natural Science, 16, 25-44.
https://doi.org/10.4236/ns.2024.164004
[78]  Charvatova, I. (1988) The Solar Motion and the Variability of Solar Activity. Advances in Space Research, 8, 147-150.
https://doi.org/10.1016/0273-1177(88)90184-6

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133