全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Preliminary Report on the Paleoproterozoic Metasediments Genesis and Features of the Banfora Belt Western Burkina Faso (West Africa Craton)

DOI: 10.4236/ijg.2025.161001, PP. 1-19

Keywords: Metasediments, Banfora Belt, Source, Alteration, Geotectonic Environment

Full-Text   Cite this paper   Add to My Lib

Abstract:

Metasedimentary rocks of the Banfora belt are examined for their petrography geochemistry and genesis. The main formations are pelite metapelites sandstone, and metagraywackes. The first ones show a fine interlocking layering with unclear graded bedding in the sandstone compared to the metapelites, while the metagraywackes show a clearly discordant graded bedding of light grey to light pink color. The low SiO2/Al2O3 ratios (3.67 to 6.60) suggest their low sedimentary maturity. The metapelites and sandstone-pelites show moderate Na2O/K2O values (10.13 - 22.69), indicating moderate chemical maturity; in contrast, the metagraywackes show low Na2O/K2O values (1.94 - 5.80) suggesting low chemical maturity. The metapelites, sandstone-pelites and metagraywackes have Rb/Sr ratios of 0.866 - 0.004 and 0.173 - 0.607 respectively, indicating a moderate to low degree of chemical alteration. The chemical alteration index (CIA = 58 - 83) and the plagioclase alteration index (PIA = 53 - 81) suggest weak to moderate alteration of the source rocks. This alteration is different from simple alteration as the sole control of chemical composition, but is associated with metasomatism. The metapelites sandstone shows a mixture of mafic and intermediate igneous sources, which indicates that the protoliths could be basalts and andesites, but the metagraywackes would be derived from the erosion of a mixture of andesitic to granitic rocks. The studied rocks were generated from young undifferentiated to differentiated arcs. They are of low to moderate sedimentary and chemical maturity.

References

[1]  Blatt, H. (1967) Provenance Determinations and Recycling of Sediments. SEPM Journal of Sedimentary Research, 37, 1031-1044.
https://doi.org/10.1306/74d71825-2b21-11d7-8648000102c1865d
[2]  Dickinson, W.R. (1970) Interpreting Detrital Modes of Graywacke and Arkose. SEPM Journal of Sedimentary Research, 40, 695-707.
https://doi.org/10.1306/74d72018-2b21-11d7-8648000102c1865d
[3]  Taylor, S.R. and McLennan, S.M. (1985) The Continental Crust: Its Composition and Evolution. Blackwell, 312.
[4]  McLennan, S.M., Hemming, S., McDaniel, D.K. and Hanson, G.N. (1993) Geochemical Approaches to Sedimentation, Provenance, and Tectonics. In: Johnsson, M.J. and Basu, A., Eds., Geological Society of America Special Papers, Geological Society of America, 21-40.
https://doi.org/10.1130/spe284-p21
[5]  Rudnick, R.L. and Gao, S. (2014) Composition of the Continental Crust. In: Holland, H. and Turekian, K., Eds., Treatise on Geochemistry, Elsevier, 1-51.
https://doi.org/10.1016/b978-0-08-095975-7.00301-6
[6]  Genna, D., Gaboury, D. and Roy, G. (2014) Evolution of a Volcanogenic Hydrothermal System Recorded by the Behavior of LREE and Eu: Case Study of the Key Tuffite at Bracemac-McLeod Deposits, Matagami, Canada. Ore Geology Reviews, 63, 160-177.
https://doi.org/10.1016/j.oregeorev.2014.04.019
[7]  Asiedu, D.K., Asong, S., Atta-Peters, D., Sakyi, P.A., Su, B., Dampare, S.B., et al. (2017) Geochemical and Nd-Isotopic Compositions of Juvenile-Type Paleoproterozoic Birimian Sedimentary Rocks from Southeastern West African Craton (Ghana): Constraints on Provenance and Tectonic Setting. Precambrian Research, 300, 40-52.
https://doi.org/10.1016/j.precamres.2017.07.035
[8]  Rudnick, R.L. and Gao, S. (2003) Composition of the Continental Crust. In: Turekian, H.D.H.K., Ed., Treatise on Geochemistry, Elsevier, 1-64.
https://doi.org/10.1016/b0-08-043751-6/03016-4
[9]  Busby, C. and Pérez, A.A. (2012) Tectonics of Sedimentary Basins Recent Advances. Wiley Blackwell, 664.
[10]  Grenholm, M., Jessell, M. and Thébaud, N. (2019) Paleoproterozoic Volcano-Sedimentary Series in the Ca. 2.27-1.96 Ga Birimian Orogen of the Southeastern West African Craton. Precambrian Research, 328, 161-192.
https://doi.org/10.1016/j.precamres.2019.04.005
[11]  Pouclet, A., Doumbia, S. and Vidal, M. (2006) Geodynamic Setting of the Birimian Volcanism in Central Ivory Coast (Western Africa) and Its Place in the Palaeoproterozoic Evolution of the Man Shield. Bulletin de la Société Géologique de France, 177, 105-121.
https://doi.org/10.2113/gssgfbull.177.2.105
[12]  Lompo, M. (2009) Geodynamic Evolution of the 2.25-2.0 Ga Palaeoproterozoic Magmatic Rocks in the Man-Leo Shield of the West African Craton. A Model of Subsidence of an Oceanic Plateau. Geological Society, London, Special Publications, 323, 231-254.
https://doi.org/10.1144/sp323.11
[13]  Baratoux, L., Metelka, V., Naba, S., Jessell, M.W., Grégoire, M. and Ganne, J. (2011) Juvenile Paleoproterozoic Crust Evolution during the Eburnean Orogeny (~2.2-2.0 Ga), Western Burkina Faso. Precambrian Research, 191, 18-45.
https://doi.org/10.1016/j.precamres.2011.08.010
[14]  Ilboudo, H., Sawadogo, S., Zongo, G.H., Naba, S., Wenmenga, U. and Lompo, M. (2020) Geochemistry and Geodynamic Constraint of Volcanic and Plutonic Magmatism within the Banfora Belt (Burkina-Faso, West-Africa): Contribution to Mineral Exploration. Geological Society, London, Special Publications, 502, 283-307.
https://doi.org/10.1144/sp502-2019-86
[15]  Mériaud, N., Thébaud, N., Masurel, Q., Hayman, P., Jessell, M., Kemp, A., et al. (2020) Lithostratigraphic Evolution of the Bandamian Volcanic Cycle in Central Côte d’Ivoire: Insights into the Late Eburnean Magmatic Resurgence and Its Geodynamic Implications. Precambrian Research, 347, Article ID: 105847.
https://doi.org/10.1016/j.precamres.2020.105847
[16]  Ilboudo, H., Sawadogo, S., Kagambega, N. and Remmal, T. (2021) Petrology, Geochemistry, and Source of the Emplacement Model of the Paleoproterozoic Tiébélé Granite Pluton, Burkina Faso (West-Africa): Contribution to Mineral Exploration. International Journal of Earth Sciences, 110, 1753-1781.
https://doi.org/10.1007/s00531-021-02039-3
[17]  Hayman, P.C., Bolz, P., Senyah, G., Tegan, E., Denyszyn, S., Murphy, D.T., et al. (2023) Physical and Geochemical Reconstruction of a 2.35-2.1 Ga Volcanic Arc (Toumodi Greenstone Belt, Ivory Coast, West Africa). Precambrian Research, 389, Article ID: 107029.
https://doi.org/10.1016/j.precamres.2023.107029
[18]  Gnamou, B., Ilboudo, H., Toé, W.A.B. and Sawadogo, S. (2023) Geochemical Mobility Associated to Gold and Base Metal Occurrences of Mangodara Sector, in Southern Burkina Faso, Banfora Greenstone Belts (West African Craton). Open Journal of Geology, 13, 1024-1053.
https://doi.org/10.4236/ojg.2023.1310044
[19]  Gnamou, B., Ilboudo, H., Toe, W.A.B. and Sawadogo, S. (2024) Geochemical Feature of the Mangodara Metavolcanic Rocks within the Banfora Paleoproterozoic Greenstone Belts, Southern Burkina Faso (West African Craton). Bulletin de lInstitut Scientifique, Rabat, Section Sciences de la Terre, 46, 31-53.
[20]  Hirdes, W. and Davis, D.W. (2002) U-Pb Geochronology of Paleoproterozoic Rocks in the Southern Part of the Kedougou-Kéniéba Inlier, Senegal, West Africa: Evidence for Diachronous Accretionary Development of the Eburnean Province. Precambrian Research, 118, 83-99.
https://doi.org/10.1016/s0301-9268(02)00080-3
[21]  Pigois, J., Groves, D.I., Fletcher, I.R., McNaughton, N.J. and Snee, L.W. (2003) Age Constraints on Tarkwaian Palaeoplacer and Lode-Gold Formation in the Tarkwa-Damang District, SW Ghana. Mineralium Deposita, 38, 695-714.
https://doi.org/10.1007/s00126-003-0360-5
[22]  Block, S., Baratoux, L., Zeh, A., Laurent, O., Bruguier, O., Jessell, M., et al. (2016) Paleoproterozoic Juvenile Crust Formation and Stabilisation in the South-Eastern West African Craton (Ghana); New Insights from U-Pb-Hf Zircon Data and Geochemistry. Precambrian Research, 287, 1-30.
https://doi.org/10.1016/j.precamres.2016.10.011
[23]  Gasquet, D., Barbey, P., Adou, M. and Paquette, J.L. (2003) Structure, Sr-Nd Isotope Geochemistry and Zircon U-Pb Geochronology of the Granitoids of the Dabakala Area (Côte d’Ivoire): Evidence for a 2.3 Ga Crustal Growth Event in the Palaeoproterozoic of West Africa? Precambrian Research, 127, 329-354.
https://doi.org/10.1016/s0301-9268(03)00209-2
[24]  Doumbia, S., Pouclet, A., Kouamelan, A., Peucat, J.J., Vidal, M. and Delor, C. (1998) Petrogenesis of Juvenile-Type Birimian (Paleoproterozoic) Granitoids in Central Côte-D’ivoire, West Africa: Geochemistry and Geochronology. Precambrian Research, 87, 33-63.
https://doi.org/10.1016/s0301-9268(97)00201-5
[25]  Hein, K.A.A., Matsheka, I.R., Bruguier, O., Masurel, Q., Bosch, D., Caby, R., et al. (2015) The Yatela Gold Deposit: 2 Billion Years in the Making. Journal of African Earth Sciences, 112, 548-569.
https://doi.org/10.1016/j.jafrearsci.2015.07.017
[26]  Koffi, Y.H., Wenmenga, U. and Djro, S.C. (2016) Tarkwaian Deposits of the Birimian Belt of Houndé: Petrological, Structural and Geochemical Study (Burkina-Faso, West Africa). International Journal of Geosciences, 7, 685-700.
https://doi.org/10.4236/ijg.2016.75053
[27]  Castaing, C., Billa, M., Milési, J.P., Thiéblemont, D., Le Métour, J., Egal, E., Donzeau, M., Guerrot, C., Cocherie, A., Chèvremont, P., Tegyey, M., Itard, Y., Zida, B., Ouedraogo, B., Kote, S., Kabore, B.E., Ouedraogo, C., Ki, J.C. and Zunino, C. (2003) Notice explicative de la carte géologique et minière du Burkina Faso à 1/1 000 000. Bureau de Recherches Géologiques et Miniéres (BRGM), 148.
[28]  Kouamelan, A.N., Delor, C. and Peucat, J. (1997) Geochronological Evidence for Reworking of Archean Terrains during the Early Proterozoic (2.1 Ga) in the Western Cote D’ivoire (Man Rise-West African Craton). Precambrian Research, 86, 177-199.
https://doi.org/10.1016/s0301-9268(97)00043-0
[29]  Caby, R., Delor, C. and Agoh, O. (2000) Lithologie, structure et métamorphisme des formations birimiennes dans la région d’Odienné(Cote d’Ivoire): Role majeur du diapirisme des plutons et des décrochements en bordure du craton de Man. Journal of African Earth Sciences, 30, 351-374.
https://doi.org/10.1016/s0899-5362(00)00024-5
[30]  Rollinson, H. (2016) Archaean Crustal Evolution in West Africa: A New Synthesis of the Archaean Geology in Sierra Leone, Liberia, Guinea and Ivory Coast. Precambrian Research, 281, 1-12.
https://doi.org/10.1016/j.precamres.2016.05.005
[31]  Markwitz, V., Hein, K.A.A. and Miller, J. (2016) Compilation of West African Mineral Deposits: Spatial Distribution and Mineral Endowment. Precambrian Research, 274, 61-81.
https://doi.org/10.1016/j.precamres.2015.05.028
[32]  Parra-Avila, L.A., Kemp, A.I.S., Fiorentini, M.L., Belousova, E., Baratoux, L., Block, S., et al. (2017) The Geochronological Evolution of the Paleoproterozoic Baoulé-Mossi Domain of the Southern West African Craton. Precambrian Research, 300, 1-27.
https://doi.org/10.1016/j.precamres.2017.07.036
[33]  Vidal, M., Gumiaux, C., Cagnard, F., Pouclet, A., Ouattara, G. and Pichon, M. (2009) Evolution of a Paleoproterozoic “Weak Type” Orogeny in the West African Craton (Ivory Coast). Tectonophysics, 477, 145-159.
https://doi.org/10.1016/j.tecto.2009.02.010
[34]  Lompo, M. (2010) Paleoproterozoic Structural Evolution of the Man-Leo Shield (West Africa). Key Structures for Vertical to Transcurrent Tectonics. Journal of African Earth Sciences, 58, 19-36.
https://doi.org/10.1016/j.jafrearsci.2010.01.005
[35]  Ganne, J., De Andrade, V., Weinberg, R.F., Vidal, O., Dubacq, B., Kagambega, N., et al. (2011) Modern-Style Plate Subduction Preserved in the Palaeoproterozoic West African Craton. Nature Geoscience, 5, 60-65.
https://doi.org/10.1038/ngeo1321
[36]  Augustin, J. and Gaboury, D. (2017) Paleoproterozoic Plume-Related Basaltic Rocks in the Mana Gold District in Western Burkina Faso, West Africa: Implications for Exploration and the Source of Gold in Orogenic Deposits. Journal of African Earth Sciences, 129, 17-30.
https://doi.org/10.1016/j.jafrearsci.2016.12.007
[37]  Bonzi, W.M., Vanderhaeghe, O., Van Lichtervelde, M., Wenmenga, U., André-Mayer, A., Salvi, S., et al. (2021) Petrogenetic Links between Rare Metal-Bearing Pegmatites and TTG Gneisses in the West African Craton: The Mangodara District of SW Burkina Faso. Precambrian Research, 364, Article ID: 106359.
https://doi.org/10.1016/j.precamres.2021.106359
[38]  Milési, J.P., Feybesse, J.L., Ledru, P., Dommanget, A., Ouédraogo, M.F., Marcoux, E., Prost, A.E., Vinchon, C., Sylvain, J.P., Johan, V., Teguey, M., Calvez, J.Y. and La-gny, P. (1989) Les minéralisations aurifères d’Afrique de l’Ouest. Leurs relations avec l’évolution lithostructurale au Protérozoïque inférieur. Chroniques Recherche Minière France, 497, 3-98.
[39]  Ilboudo, H., Wenmenga, U. and Sawadogo, S. (2017) Mise en évidence d’un assemblage à disthène-staurotide—Grenat dans le secteur de Mangodara, ceinture de Banfora, Burkina Faso, Afrique de l’ Ouest: Implication dans la genèse des gîtes minéraux polymétalliques. Afrique Science, 13, 220-223.
[40]  Parra-Avila, L.A., Baratoux, L., Eglinger, A., Fiorentini, M.L. and Block, S. (2019) The Eburnean Magmatic Evolution across the Baoulé-Mossi Domain: Geodynamic Implications for the West African Craton. Precambrian Research, 332, Article ID: 105392.
https://doi.org/10.1016/j.precamres.2019.105392
[41]  Ouattara, G. (1998) Structure du Batholite de Ferkessédougou (Secteur de Zuenoula, Côte d’Ivoire). Master’s Thesis, Université d’Orléans.
[42]  Bonzi, W.M., Van Lichtervelde, M., Vanderhaeghe, O., André-Mayer, A., Salvi, S. and Wenmenga, U. (2022) Insights from Mineral Trace Chemistry on the Origin of NYF and Mixed LCT + NYF Pegmatites and Their Mineralization at Mangodara, SW Burkina Faso. Mineralium Deposita, 58, 75-104.
https://doi.org/10.1007/s00126-022-01127-x
[43]  Kretz, R. (1983) Symbols for Rock-Forming Minerals. American Mineralogist, 68, 277-279.
[44]  Herron, M.M. (1988) Geochemical Classification of Terrigenous Sands and Shales from Core or Log Data. SEPM Journal of Sedimentary Research, 58, 820-829.
https://doi.org/10.1306/212f8e77-2b24-11d7-8648000102c1865d
[45]  Roddaz, M., Debat, P. and Nikiema, S. (2007) Geochemistry of Upper Birimian Sediments (Major and Trace Elements and Nd-Sr Isotopes) and Implications for Weathering and Tectonic Setting of the Late Paleoproterozoic Crust. Precambrian Research, 159, 197-211.
https://doi.org/10.1016/j.precamres.2007.06.008
[46]  Tshibubudze, A., Hein, K.A.A., Peters, L.F.H., Woolfe, A.J. and McCuaig, T.C. (2013) Oldest U-Pb Crystallisation Age for the West African Craton from the Oudalan-Gorouol Belt of Burkina Faso. South African Journal of Geology, 116, 169-181.
https://doi.org/10.2113/gssajg.116.1.169
[47]  Asiedu, D.K., Agoe, M., Amponsah, P.O., Nude, P.M. and Anani, C.Y. (2019) Geochemical Constraints on Provenance and Source Area Weathering of Metasedimentary Rocks from the Paleoproterozoic (~2.1 Ga) Wa-Lawra Belt, Southeastern Margin of the West African Craton. Geodinamica Acta, 31, 27-39.
https://doi.org/10.1080/09853111.2019.1670414
[48]  Adingra, M.P.K., Coulibaly, Y., Ouattara, Z. and Coulibaly, I. (2018) Caractéristiques pétrographiques et géochimiques des métasédiments de la partie sud-est du bassin de la Comoé (Nord d’Alépé, sudest de la Côte d’Ivoire). Revue RAMReS, Sciences de la vie, de la terre et agronomie, 6, 28-35.
[49]  Teha, K.R., Pria, K.K.J., Koffi, A.Y., Brou, K.J., Kouassi, B.R. and Kouamelan, A.N. (2023) Tracing the Sources of Paleoproterozoic Metasediments in the Comoé Basin, Côte D’ivoire, West Africa: Geochemistry Implication. Journal of Geography, Environment and Earth Science International, 27, 113-129.
https://doi.org/10.9734/jgeesi/2023/v27i10720
[50]  Leube, A., Hirdes, W., Mauer, R. and Kesse, G.O. (1990) The Early Proterozoic Birimian Supergroup of Ghana and Some Aspects of Its Associated Gold Mineralization. Precambrian Research, 46, 139-165.
https://doi.org/10.1016/0301-9268(90)90070-7
[51]  Bossière, G., Bonkoungou, I., Peucat, J. and Pupin, J. (1996) Origin and Age of Paleoproterozoic Conglomerates and Sandstones of the Tarkwaian Group in Burkina Faso, West Africa. Precambrian Research, 80, 153-172.
https://doi.org/10.1016/s0301-9268(96)00014-9
[52]  Lebrun, E., Miller, J., Thébaud, N., Ulrich, S. and McCuaig, T.C. (2017) Structural Controls on an Orogenic Gold System: The World-Class Siguiri Gold District, Siguiri Basin, Guinea, West Africa. Economic Geology, 112, 73-98.
https://doi.org/10.2113/econgeo.112.1.73
[53]  Rollinson, H.R. (1993) Using Geochemical Data Evaluation, Presentation, Interpretation. John Wiley & Sons, 352.
[54]  Land, L.S. (1984) Frio Sandstone diagenesis, Texas Gulf Coast: A Regional Isotopic Study. In: McDonald, D.A. and Surdam, R.C., Eds., Clastic Genesis, American Association of Petroleum Geologists Memoir, 47-62.
[55]  Roser, B.P. and Korsch, R.J. (1986) Determination of Tectonic Setting of Sandstone-Mudstone Suites Using SiO2 Content and K2O/Na2O Ratio. The Journal of Geology, 94, 635-650.
https://doi.org/10.1086/629071
[56]  Koffi, Y.A., Kouamelan, A.N., Kouadio, F.J.L.H., Teha, K.R., Kouassi, B.R. and Koffi, G.R.S. (2018) Pétrographie et origine des métasédiments du domaine SASCA (SW de la Côte d’Ivoire). International Journal of Innovation and Applied Studies, 23, 451-464.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133