全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Occurrence and Distribution of Antifouling Biocide Diuron along the Coastal Areas of Zanzibar Island

DOI: 10.4236/gep.2025.131001, PP. 1-17

Keywords: Diuron, Coral Reefs, Harbor, Marine Resources, Marine Protected Areas

Full-Text   Cite this paper   Add to My Lib

Abstract:

Diuron (N-(3,4-dichlorophenyl)-N,N-dimethylurea) is one among the booster biocides substituted tributyltin as an antifouling agent. It has continued to be used ever since, though little is known about their levels in the maritime setting of Zanzibar. This paper details the occurrence and distribution of diuron around the coastline of Zanzibar Island. The reported concentrations of diuron in water ranged from Below Detection Limit to 1321.67 ± 52.3 ng/L at Bwawani. Majority of the sites showed levels above Environmental Risk Limit of 430 ng/L as proposed by the Dutch Authorities. The findings suggest the contamination is elevated especial in Harbor, Bwawani, Chapwani and even at Marine Protected Areas such Mnemba Island where the value of 620.33 ± 5.70 ng/L was recorded. The main possible sources of the contamination are cargo shipping, passenger speedboats, fishing, and tourism activities taking places in these areas. Therefore, future studies on the antifouling biocide diuron particularly on long term monitoring, chronic exposure, risk assessment, organisms’ responses and pollution models will add special value towards better understanding of the mechanisms and sustainable marine ecosystem health.

References

[1]  Agardy, T. S. (1997). Marine Protected Area Typologies (p. 244). Elsevier.
[2]  Albanis, T. A., Lambropoulou, D. A., Sakkas, V. A., & Konstantinou, I. K. (2002). Antifouling Paint Booster Biocide Contamination in Greek Marine Sediments. Chemosphere, 48, 475-485.
https://doi.org/10.1016/s0045-6535(02)00134-0
[3]  Ali, H. R., Ariffin, M. M., Omar, T. F. T., Ghazali, A., Sheikh, M. A., Shazili, N. A. M. et al. (2021). Antifouling Paint Biocides (Irgarol 1051 and Diuron) in the Selected Ports of Peninsular Malaysia: Occurrence, Seasonal Variation, and Ecological Risk Assessment. Environmental Science and Pollution Research, 28, 52247-52257.
https://doi.org/10.1007/s11356-021-14424-1
[4]  Ali, H. R., Arifin, M. M., Sheikh, M. A., Shazili, N. A. M., Bakari, S. S., & Bachok, Z. (2014). Contamination of Diuron in Coastal Waters around Malaysian Peninsular. Marine Pollution Bulletin, 85, 287-291.
https://doi.org/10.1016/j.marpolbul.2014.05.049
[5]  Boxall, A. B. A., Comber, S. D., Conrad, A. U., Howcroft, J., & Zaman, N. (2000). Inputs, Monitoring and Fate Modelling of Antifouling Biocides in UK Estuaries. Marine Pollution Bulletin, 40, 898-905.
https://doi.org/10.1016/s0025-326x(00)00021-7
[6]  Dahl, B., & Blanck, H. (1996). Toxic Effects of the Antifouling Agent Irgarol 1051 on Periphyton Communities in Coastal Water Microcosms. Marine Pollution Bulletin, 32, 342-350.
https://doi.org/10.1016/0025-326x(96)84828-4
[7]  de Almeida Azevedo, D., Lacorte, S., Vinhas, T., Viana, P., & Barceló, D. (2000). Monitoring of Priority Pesticides and Other Organic Pollutants in River Water from Portugal by Gas ChromatographyMass Spectrometry and Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry. Journal of Chromatography A, 879, 13-26.
https://doi.org/10.1016/s0021-9673(00)00372-1
[8]  Ferrer, I., & Barceló, D. (1999). Simultaneous Determination of Antifouling Herbicides in Marina Water Samples by On-Line Solid-Phase Extraction Followed by Liquid Chromatography-Mass Spectrometry. Journal of Chromatography A, 854, 197-206.
https://doi.org/10.1016/s0021-9673(99)00506-3
[9]  Ferrer, I., Ballesteros, B., Marco, M. P., & Barceló, D. (1997). Pilot Survey for Determination of the Antifouling Agent Irgarol 1051 in Enclosed Seawater Samples by a Direct Enzyme-Linked Immunosorbent Assay and Solid-Phase Extraction Followed by Liquid Chromatography-Diode Array Detection. Environmental Science & Technology, 31, 3530-3535.
https://doi.org/10.1021/es970292c
[10]  Field, J. A., Reed, R. L., Sawyer, T. E., Griffith, S. M., & Wigington, P. J. (2003). Diuron Occurrence and Distribution in Soil and Surface and Ground Water Associated with Grass Seed Production. Journal of Environmental Quality, 32, 171-179.
https://doi.org/10.2134/jeq2003.171
[11]  Gennaro, M. C., Abrigo, C., Giacosa, D., Rigotti, L., & Liberatori, A. (1995). Separation of Phenylurea Pesticides by Ion-Interaction Reversed-Phase High-Performance Liquid Chromatography Diuron Determination in Lagoon Water. Journal of Chromatography A, 718, 81-88.
https://doi.org/10.1016/0021-9673(95)00659-1
[12]  Giacomazzi, S., & Cochet, N. (2004). Environmental Impact of Diuron Transformation: A Review. Chemosphere, 56, 1021-1032.
https://doi.org/10.1016/j.chemosphere.2004.04.061
[13]  Hall Jr., LW., Giddings, J. M., Solomon, K. R., & Balcomb, R. (1999). An Ecological Risk Assessment for Use of Irgarol 1051 as an Algaecide for Antifoulants Paints. Critical Re-views in Toxicology, 29, 367-437.
[14]  Haynes, D., Ralph, P., Prange, J., & Dennison, B. (2000). The Impact of the Herbicide Diuron on Photosynthesis in Three Species of Tropical Seagrass. Marine Pollution Bulletin, 41, 288-293.
https://doi.org/10.1016/s0025-326x(00)00127-2
[15]  Jones, R. (2004). Testing the ‘Photoinhibition’ Model of Coral Bleaching Using Chemical Inhibitors. Marine Ecology Progress Series, 284, 133-145.
https://doi.org/10.3354/meps284133
[16]  Jones, R. (2005). The Ecotoxicological Effects of Photosystem II Herbicides on Corals. Marine Pollution Bulletin, 51, 495-506.
https://doi.org/10.1016/j.marpolbul.2005.06.027
[17]  Jones, R., & Kerswell, A. (2003). Phytotoxicity of Photosystem II (PSII) Herbicides to Coral. Marine Ecology Progress Series, 261, 149-159.
https://doi.org/10.3354/meps261149
[18]  Konstantinou, I. K., & Albanis, T. A. (2004). Worldwide Occurrence and Effects of Antifouling Paint Booster Biocides in the Aquatic Environment: A Review. Environment International, 30, 235-248.
https://doi.org/10.1016/s0160-4120(03)00176-4
[19]  Lam, K., Cai, Z., Wai, H., Tsang, V. W., Lam, M. H., Cheung, R. Y. et al. (2005). Identification of a New Irgarol-1051 Related S-Triazine Species in Coastal Waters. Environmental Pollution, 136, 221-230.
https://doi.org/10.1016/j.envpol.2005.01.014
[20]  Lamoree, M. H., Swart, C. P., van der Horst, A., & van Hattum, B. (2002). Determination of Diuron and the Antifouling Paint Biocide Irgarol 1051 in Dutch Marinas and Coastal Waters. Journal of Chromatography A, 970, 183-190.
https://doi.org/10.1016/s0021-9673(02)00878-6
[21]  Levine, A. (2007). Staying Afloat: State Agencies, Local Communities, and International Involvement in Marine Protected Area Management in Zanzibar, Tanzania. Conservation & Society, 5, 562-565.
[22]  Lewis, S. E., Brodie, J. E., Bainbridge, Z. T., Rohde, K. W., Davis, A. M., Masters, B. L. et al. (2009). Herbicides: A New Threat to the Great Barrier Reef. Environmental Pollution, 157, 2470-2484.
https://doi.org/10.1016/j.envpol.2009.03.006
[23]  Liu, D., Pacepavicius, G. J., Maguire, R. J., Lau, Y. L., Okamura, H., & Aoyama, I. (1999). Survey for the Occurrence of the New Antifouling Compound Irgarol 1051 in the Aquatic Environment. Water Research, 33, 2833-2843.
https://doi.org/10.1016/s0043-1354(98)00501-6
[24]  Malato, S., Blanco, J., Cáceres, J., Fernández-Alba, A. R., Agüera, A., & Rodriguez, A. (2002). Photocatalytic Treatment of Water-Soluble Pesticides by Photo-Fenton and TiO2 Using Solar Energy. Catalysis Today, 76, 209-220.
https://doi.org/10.1016/s0920-5861(02)00220-1
[25]  Malato, S., Blanco, J., Richter, C., & Maldonado, M. I. (2000a). Optimization of Pre-Industrial Solar Photocatalytic Mineralization of Commercial Pesticides. Applied Catalysis B: Environmental, 25, 31-38.
https://doi.org/10.1016/s0926-3373(99)00114-9
[26]  Malato, S., Blanco, J., Richter, C., Fernández, P., & Maldonado, M. I. (2000b). Solar Photocatalytic Mineralization of Commercial Pesticides: Oxamyl. Solar Energy Materials and Solar Cells, 64, 1-14.
https://doi.org/10.1016/s0927-0248(00)00037-4
[27]  Malato, S., Blanco, J., Fernández-Alba, A. R., & Agüera, A. (2000c). Solar Photocatalytic Mineralization of Commercial Pesticides: Acrinathrin. Chemosphere, 40, 403-409.
https://doi.org/10.1016/s0045-6535(99)00267-2
[28]  Martinez, K., & Barceló, D. (2001). Determination of Antifouling Pesticides and Their Degradation Products in Marine Sediments by Means of Ultrasonic Extraction and HPLC-APCI-MS. Fresenius Journal of Analytical Chemistry, 370, 940-945.
https://doi.org/10.1007/s002160100904
[29]  Martinez, K., Ferrer, I., & Barceló, D. (2000). Part-Per-Trillion Level Determination of Antifouling Pesticides and Their Byproducts in Seawater Samples by Off-Line Solid-Phase Extraction Followed by High-Performance Liquid Chromatography-Atmospheric Pressure Chemical Ionization Mass Spectrometry. Journal of Chromatography A, 879, 27-37.
https://doi.org/10.1016/s0021-9673(00)00307-1
[30]  Muhamad, H., Ramli, M. I., Zakaria, Z., & Sahid, I. (2010). Determination of Diuron in Crude Palm Oil and Crude PALM kernel Oil by Solid Phase Extraction and High Performance Liquid Chromatography Using Ultra Violet Detection. Malaysian Palm Oil Board Information Series. Ministry of Plantation Industries and commodities.
[31]  National Research Council (1994). Restoring and Protecting Marine Habitat: Role of Engineering and Technology (p 193).
[32]  Negri, A. P., Hales, L. T., Battershill, C., Wolff, C., & Webster, N. S. (2004). TBT Contamination Identified in Antarctic Marine Sediments. Marine Pollution Bulletin, 48, 1142-1144.
https://doi.org/10.1016/j.marpolbul.2004.03.004
[33]  Okamura, H. (2002). Photodegradation of the Antifouling Compounds Irgarol 1051 and Diuron Released from a Commercial Antifouling Paint. Chemosphere, 48, 43-50.
https://doi.org/10.1016/s0045-6535(02)00025-5
[34]  Okamura, H., Aoyama, I., Ono, Y., & Nishida, T. (2003). Antifouling Herbicides in the Coastal Waters of Western Japan. Marine Pollution Bulletin, 47, 59-67.
https://doi.org/10.1016/s0025-326x(02)00418-6
[35]  Owen, R., Knap, A., Ostrander, N., & Carbery, K. (2003). Comparative Acute Toxicity of Herbicides to Photosynthesis of Coral Zooxanthellae. Bulletin of Environmental Contamination and Toxicology, 70, 541-548.
https://doi.org/10.1007/s00128-003-0020-6
[36]  Råberg, S., Nyström, M., Erös, M., & Plantman, P. (2003). Impact of the Herbicides 2, 4-D and Diuron on the Metabolism of the Coral Porites Cylindrica. Marine Environmental Research, 56, 503-514.
https://doi.org/10.1016/s0141-1136(03)00039-4
[37]  Sathiyaseelan, K., & Stella, D. (2011). Isolation, Identification and Antagonistic Activity of Marine Actinomycetes Isolated from the Muthupet Mangrove Environment. International Journal of Pharmaceutical and Biological Achieves, 2, 1464-1466.
[38]  Sheikh, M. A., Fujimura, H., Miyagi, T., Uechi, Y., Yokota, T., Yasumura, S. et al. (2009). Detection and Ecological Threats of PSII Herbicide Diuron on Coral Reefs around the Ryukyu Archipelago, Japan. Marine Pollution Bulletin, 58, 1922-1926.
https://doi.org/10.1016/j.marpolbul.2009.09.010
[39]  Sheikh, M. A., Juma, F. S., Staehr, P., Dahl, K., Rashid, R. J., Mohammed, M. S. et al. (2016). Occurrence and Distribution of Antifouling Biocide Irgarol-1051 in Coral Reef Ecosystems, Zanzibar. Marine Pollution Bulletin, 109, 586-590.
https://doi.org/10.1016/j.marpolbul.2016.05.035
[40]  Sheppard, C. R. C., Spalding, M., Bradshaw, C., & Wilson, S. (2002). Erosion Vs. Recovery of Coral Reefs after 1998 El Niño: Chagos Reefs, Indian Ocean. AMBIO: A Journal of the Human Environment, 31, 40-48.
https://doi.org/10.1639/0044-7447(2002)031[0040:evrocr]2.0.co;2
[41]  Thomas, K. V., McHugh, M., & Waldock, M. (2002). Antifouling Paint Booster Biocides in UK Coastal Waters: Inputs, Occurrence and Environmental Fate. Science of the Total Environment, 293, 117-127.
https://doi.org/10.1016/s0048-9697(01)01153-6
[42]  UNEP-WCMC (2023). Protected Area Profile for United Republic of Tanzania from the World Database on Protected Areas.
https://www.protectedplanet.net
[43]  Watanabe, T., Yuyama, I., & Yasumura, S. (2006). Toxicological Effects of Biocides on Symbiotic and Aposymbiotic Juveniles of the Hermatypic Coral Acropora tenuis. Journal of Experimental Marine Biology and Ecology, 339, 177-188.
https://doi.org/10.1016/j.jembe.2006.07.020

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133