Hydrocephalus is a medical condition caused by an abnormal cerebrospinal fluid (CSF) buildup in the brain’s ventricles. This excess fluid causes the ventricles to enlarge, increasing pressure within the brain. CSF typically flows through the ventricles and around the spinal column, bathing the brain. However, the increased pressure from excess CSF associated with hydrocephalus can damage brain tissue and lead to various problems with cognitive function. While it can occur at any age, hydrocephalus is the most common in infants and adults over 60. It has been a subject of fascination for physicians throughout history due to its striking presentation. Two main types of hydrocephalus exist: obstructive (noncommunicating) and communicating. A blockage in the CSF flow causes obstructive hydrocephalus, while communicating hydrocephalus occurs when the body’s ability to absorb CSF is impaired. The review delves into the intricacies of hydrocephalus, exploring its causes, symptoms, and pathophysiology. The latest research on the topic has been examined, including innovative treatment approaches and ongoing challenges in managing this complex condition.
References
[1]
LeDoux, J. (2023) The Deep History of Ourselves: The Four-Billion-Year Story of How We Got Conscious Brains. Philosophical Psychology, 36, 704-715. https://doi.org/10.1080/09515089.2022.2160311
[2]
Rao, D.B., Pardo, I.D., Chang, J.H., Bolon, B. and Garman, R.H. (2024) Nervous System. In: Haschek and Rousseaux’s Handbook of Toxicologic Pathology, Elsevier, 633-738. https://doi.org/10.1016/b978-0-12-821046-8.00007-4
[3]
Oliveira, L.B., Porto, S., Andreão, F.F., Ferreira, M.Y., Bocanegra-Becerra, J.E., Verly, G., et al. (2024) Are Ventriculopleural Shunts the Second Option for Treating Hydrocephalus? A Meta-Analysis of 543 Patients. Clinical Neurology and Neurosurgery, 244, Article 108396. https://doi.org/10.1016/j.clineuro.2024.108396
[4]
Agarwal, N. and Carare, R.O. (2021) Cerebral Vessels: An Overview of Anatomy, Physiology, and Role in the Drainage of Fluids and Solutes. Frontiers in Neurology, 11, Article 611485. https://doi.org/10.3389/fneur.2020.611485
[5]
Aschoff, A., Kremer, P., Hashemi, B. and Kunze, S. (1999) The Scientific History of Hydrocephalus and Its Treatment. Neurosurgical Review, 22, 67-93. https://doi.org/10.1007/s101430050035
[6]
Blitz, A.M., Ahmed, A.K. and Rigamonti, D. (2019) Founder of Modern Hydrocephalus Diagnosis and Therapy: Walter Dandy at the Johns Hopkins Hospital. Journal of Neurosurgery, 131, 1046-1051. https://doi.org/10.3171/2018.4.jns172316
[7]
Dandy, W.E. (1913) An Experimental and Clinical Study of Internal Hydrocephalus. The Journal of the American Medical Association, 61, 2216-2217. https://doi.org/10.1001/jama.1913.04350260014006
[8]
Shiota, K. (2008) Embryology of the Human Brain. Donald School Journal of Ultrasound in Obstetrics and Gynecology, 2, 1-8. https://doi.org/10.5005/jp-journals-10009-1061
[9]
William James, H., Boyd, J.D. and Mossman, H.W. (1945) Human Embryology (Prenatal Development of Form and Function).
[10]
Winn, H.R. (2022) Youmans and Winn Neurological Surgery E-Book: 4-Volume Set. Elsevier Health Sciences.
[11]
Bradley, W.G. (2014) CSF Flow in the Brain in the Context of Normal Pressure Hydrocephalus. American Journal of Neuroradiology, 36, 831-838. https://doi.org/10.3174/ajnr.a4124
[12]
Weed, L.H. (1914) Studies on Cerebro-Spinal Fluid. No. III: The Pathways of Escape from the Subarachnoid Spaces with Particular Reference to the ARACHNOID VILLI.
[13]
Simon, M.J. and Iliff, J.J. (2016) Regulation of Cerebrospinal Fluid (CSF) Flow in Neurodegenerative, Neurovascular and Neuroinflammatory Disease. Biochimica et Biophysica Acta (BBA)—Molecular Basis of Disease, 1862, 442-451. https://doi.org/10.1016/j.bbadis.2015.10.014
[14]
Van Landingham, M., Nguyen, T.V., Roberts, A., Parent, A.D. and Zhang, J. (2009) Risk Factors of Congenital Hydrocephalus: A 10 Year Retrospective Study. Journal of Neurology, Neurosurgery & Psychiatry, 80, 213-217. https://doi.org/10.1136/jnnp.2008.148932
[15]
Kim, M., Park, S., Lee, J., Kim, H., Rhim, J.H., Park, S., et al. (2021) Differences in Brain Morphology between Hydrocephalus Ex Vacuo and Idiopathic Normal Pressure Hydrocephalus. Psychiatry Investigation, 18, 628-635. https://doi.org/10.30773/pi.2020.0352
[16]
Tullberg, M., Toma, A.K., Yamada, S., Laurell, K., Miyajima, M., Watkins, L.D., et al. (2024) Classification of Chronic Hydrocephalus in Adults: A Systematic Review and Analysis. World Neurosurgery, 183, 113-122. https://doi.org/10.1016/j.wneu.2023.12.094
Huang, J., Sarma, A., Little, S. and Pruthi, S. (2023) Systematic Approach to Pediatric Macrocephaly. RadioGraphics, 43, e220159. https://doi.org/10.1148/rg.220159
[19]
Sunderland, G., Ellenbogen, J. and Mallucci, C. (2023) Hydrocephalus. In: Pediatric Surgery, Springer, 499-525. https://doi.org/10.1007/978-3-030-81488-5_40
[20]
Kirkpatrick, M., Engleman, H. and Minns, R.A. (1989) Symptoms and Signs of Progressive Hydrocephalus. Archives of Disease in Childhood, 64, 124-128. https://doi.org/10.1136/adc.64.1.124
[21]
Munch, T.N., Rasmussen, M.-H., Wohlfahrt, J., Juhler, M. and Melbye, M. (2014) Risk Factors for Congenital Hydrocephalus: A Nationwide, Register-Based, Cohort Study. Journal of Neurology, Neurosurgery & Psychiatry, 85, 1253-1259. https://doi.org/10.1136/jnnp-2013-306941
[22]
Abebe, M.S., Seyoum, G., Emamu, B. and Teshome, D. (2022) Congenital Hydrocephalus and Associated Risk Factors: An Institution-Based Case–Control Study, Dessie Town, North East Ethiopia. Pediatric Health, Medicine and Therapeutics, 13, 175-182. https://doi.org/10.2147/phmt.s364447
[23]
Walsh, S., Donnan, J., Morrissey, A., Sikora, L., Bowen, S., Collins, K., et al. (2017) A Systematic Review of the Risks Factors Associated with the Onset and Natural Progression of Hydrocephalus. NeuroToxicology, 61, 33-45. https://doi.org/10.1016/j.neuro.2016.03.012
[24]
McAllister, J.P. (2012) Pathophysiology of Congenital and Neonatal Hydrocephalus. Seminars in Fetal and Neonatal Medicine, 17, 285-294. https://doi.org/10.1016/j.siny.2012.06.004
[25]
Del Bigio, M.R. (2001) Pathophysiologic Consequences of Hydrocephalus. Neurosurgery Clinics of North America, 12, 639-649. https://doi.org/10.1016/s1042-3680(18)30022-6
[26]
Bräutigam, K., Vakis, A. and Tsitsipanis, C. (2019) Pathogenesis of Idiopathic Normal Pressure Hydrocephalus: A Review of Knowledge. Journal of Clinical Neuroscience, 61, 10-13. https://doi.org/10.1016/j.jocn.2018.10.147
[27]
Orešković, D. and Klarica, M. (2010) The Formation of Cerebrospinal Fluid: Nearly a Hundred Years of Interpretations and Misinterpretations. Brain Research Reviews, 64, 241-262. https://doi.org/10.1016/j.brainresrev.2010.04.006
[28]
Pickard, J. (1988) Physiology and Pathophysiology of the Cerebrospinal Fluid. Journal of Neurology, Neurosurgery & Psychiatry, 51, 469-470. https://doi.org/10.1136/jnnp.51.3.469-a
[29]
Soytürk, H., Yılmaz, M., Önal, C., Suveren, E. and Kılıç, Ü. (2022) Circulation of Cerebrospinal Fluid (CSF). In: Cerebrospinal Fluid, Intech Open, 21. https://doi.org/10.5772/intechopen.99621
[30]
Xin, L., Madarasz, A., Ivan, D.C., Weber, F., Aleandri, S., Luciani, P., et al. (2024) Impairment of Spinal CSF Flow Precedes Immune Cell Infiltration in an Active EAE Model. Journal of Neuroinflammation, 21, Article No. 272. https://doi.org/10.1186/s12974-024-03247-9
[31]
Pudenz, R.H., Russell, F.E., Hurd, A.H. and Shelden, C.H. (1957) Ventriculo-Auriculostomy. A Technique for Shunting Cerebrospinal Fluid into the Right Auricle. Journal of Neurosurgery, 14, 171-179. https://doi.org/10.3171/jns.1957.14.2.0171
[32]
Avery, R.A., Shah, S.S., Licht, D.J., Seiden, J.A., Huh, J.W., Boswinkel, J., et al. (2010) Reference Range for Cerebrospinal Fluid Opening Pressure in Children. New England Journal of Medicine, 363, 891-893. https://doi.org/10.1056/nejmc1004957
[33]
Krishnamurthy, S. (2014) New Concepts in the Pathogenesis of Hydrocephalus. Translational Pediatrics, 3, Article 185.
[34]
Oresˇković, D., Whitton, P.S. and Lupret, V. (1991) Effect of Intracranial Pressure on Cerebrospinal Fluid Formation in Isolated Brain Ventricles. Neuroscience, 41, 773-777. https://doi.org/10.1016/0306-4522(91)90367-w
[35]
Orešković, D. and Klarica, M. (2011) Development of Hydrocephalus and Classical Hypothesis of Cerebrospinal Fluid Hydrodynamics: Facts and Illusions. Progress in Neurobiology, 94, 238-258. https://doi.org/10.1016/j.pneurobio.2011.05.005
[36]
Rasmussen, M.K., Mestre, H. and Nedergaard, M. (2022) Fluid Transport in the Brain. Physiological Reviews, 102, 1025-1151. https://doi.org/10.1152/physrev.00031.2020
[37]
Fujii, N., Nomura, S., Izuma, H. and Ishihara, H. (2024) Which Theory of Cerebrospinal Fluid Production and Absorption Do Neurosurgeons Teach to Medical Students? Survey from Medical Universities in Japan, 2022. Neurologia Medico-Chirurgica, 64, 241-246. https://doi.org/10.2176/jns-nmc.2023-0277
[38]
Warf, B.C. (2005) Comparison of 1-Year Outcomes for the Chhabra and Codman-Hakim Micro Precision Shunt Systems in Uganda: A Prospective Study in 195 Children. Journal of Neurosurgery: Pediatrics, 102, 358-362. https://doi.org/10.3171/ped.2005.102.4.0358
[39]
Harris, C., Khasawneh, A. and Garling, R. (2018) Cerebrospinal Fluid Circulation: What Do We Know and How Do We Know It? Brain Circulation, 4, 14-18. https://doi.org/10.4103/bc.bc_3_18
[40]
Frassanito, P., Goker, B. and Di Rocco, C. (2020) Aqueductal Stenosis and Hydrocephalus. In: Textbook of Pediatric Neurosurgery, Springer, 501-519. https://doi.org/10.1007/978-3-319-72168-2_20
[41]
Klarica, M., Orešković, D., Božić, B., Vukić, M., Butković, V. and Bulat, M. (2009) New Experimental Model of Acute Aqueductal Blockage in Cats: Effects on Cerebrospinal Fluid Pressure and the Size of Brain Ventricles. Neuroscience, 158, 1397-1405. https://doi.org/10.1016/j.neuroscience.2008.11.041
[42]
Shapiro, K., Kohn, I.J., Takei, F. and Zee, C. (1987) Progressive Ventricular Enlargement in Cats in the Absence of Transmantle Pressure Gradients. Journal of Neurosurgery, 67, 88-92. https://doi.org/10.3171/jns.1987.67.1.0088
[43]
Krishnamurthy, S., Li, J., Shen, Y., Duncan, T.M., Jenrow, K.A. and Haacke, E.M. (2018) Normal Macromolecular Clearance Out of the Ventricles Is Delayed in Hydrocephalus. Brain Research, 1678, 337-355. https://doi.org/10.1016/j.brainres.2017.10.013
[44]
Klebe, D., MBride, D., Krafft, P.R., Flores, J.J., Tang, J. and Zhang, J.H. (2019) Posthemorrhagic Hydrocephalus Development after Germinal Matrix Hemorrhage: Established Mechanisms and Proposed Pathways. Journal of Neuroscience Research, 98, 105-120. https://doi.org/10.1002/jnr.24394
[45]
Shooman, D., Portess, H. and Sparrow, O. (2009) A Review of the Current Treatment Methods for Posthaemorrhagic Hydrocephalus of Infants. Cerebrospinal Fluid Research, 6, Article No. 1. https://doi.org/10.1186/1743-8454-6-1
[46]
Jacobs, L. (1977) Diabetes Mellitus in Normal Pressure Hydrocephalus. Journal of Neurology, Neurosurgery & Psychiatry, 40, 331-335. https://doi.org/10.1136/jnnp.40.4.331
[47]
Ghorbani, Z.T. (2009) Maternal Diabetes Induced Hydrocephaly in Newborn Rats.
[48]
Sreelatha, S.K. (2018) A Clinical Review of Obstetric and Perinatal Outcome in Thyroid Disorders. Endocrinology&Metabolism International Journal, 6, 266-282. https://doi.org/10.15406/emij.2018.06.00188
[49]
Gruber, R.W. and Roehrig, B. (2010) Prevention of Ventricular Catheter Obstruction and Slit Ventricle Syndrome by the Prophylactic Use of the Integra Antisiphon Device in Shunt Therapy for Pediatric Hypertensive Hydrocephalus: A 25-Year Follow-Up Study. Journal of Neurosurgery: Pediatrics, 5, 4-16. https://doi.org/10.3171/2008.7.17690
[50]
Noonan, J.A. and Ehmke, D.A. (1963) Complications of Ventriculovenous Shunts for Control of Hydrocephalus. New England Journal of Medicine, 269, 70-74. https://doi.org/10.1056/nejm196307112690203