全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于无人机RGB和LiDAR相机的湿地松生长性状测量与遗传评估
Measurement of Growth Traits and Genetic Evaluation of Pinus elliottii Using UAV RGB and LiDAR Cameras

DOI: 10.12677/wjf.2025.141008, PP. 61-71

Keywords: 无人机,激光雷达,湿地松,生长性状,遗传分析
UAV
, LiDAR, Pinus elliottii, Growth Traits, Genetic Analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着林业信息化和智能化的推进,无人机在林业数据采集和分析中的应用日益广泛。本研究以湿地松为研究对象,对比无人机RGB相机(可见光相机)和LiDAR相机(激光雷达相机)在获取湿地松生长性状与地面真实值之间的精度差异,并借此方法寻找湿地松优良家系。这两种无人机通过执行相同的飞行路线,飞行后数据经过数据分析得到每株湿地松的树高和冠幅,并建立胸径预测模型,比较两个相机的预测精度和选育优良家系。结果显示,LiDAR相机在50 m和80 m高度下,树高预测的相关系数R2均为0.88,优于RGB相机的预测精度。50 m高度下RGB相机倾斜摄影的相关系数R2为0.86,优于正射影像的0.78。基于树高和冠幅的胸径预测模型也表现出较高的精度。不同飞行任务获取的数据均对选育优良家系有积极的作用,与真实选育结果一致。虽然RGB相机的预测精度略低于LiDAR相机,但差异不显著,显示其可作为低成本替代方案。激光雷达的飞行高度(50 m和80 m)对树高测量精度无显著影响,80m具有较短的飞行时间,RGB相机倾斜摄影的精度高但飞行时间较长。湿地松的树高、胸径和冠幅均受中高遗传力控制,育种值分析表明10号家系表现优异,适合进一步选育。本研究为无人机在林木资源调查和表型遗传分析应用中提供了科学支持。
In recent years, with the advancement of forestry informatization and automation, the application of UAV in forestry data collection and analysis has grown increasingly prevalent. This study focuses on Pinus elliottii to compare the accuracy of UAV RGB sensor (Visible Light Camera) and LiDAR sensor (Lidar Camera) in capturing growth traits relative to ground truth measurements, aiming to identify superior Pinus elliottii families using these methods. Both UAV followed the same flight paths, and after data processing, tree height and crown width for each tree were obtained. A diameter at breast height (DBH) prediction model was then developed, and the accuracy of the two sensors’ predictions was compared, along with their utility in family selection. Results showed that the LiDAR sensor achieved a correlation coefficient (R2) of 0.88 for tree height predictions at both 50 m and 80 m altitudes, outperforming the RGB sensor. At 50 m, the RGB sensor’s oblique photography produced an R2 of 0.86, superior to the 0.78 obtained from orthophotos. The DBH prediction model, based on tree height and crown width, also exhibited high accuracy. Data collected from different flight missions positively contributed to the selection of superior families, aligning well with actual breeding outcomes. Although the RGB sensor’s prediction accuracy was slightly lower than that of the LiDAR sensor, the difference was not significant, indicating that it can serve as a cost-effective alternative. The flight altitude of the LiDAR (50 m and 80 m) had no significant effect on tree height measurement accuracy, with the 80 m altitude providing shorter flight times. While the RGB sensor’s oblique photography offered higher accuracy, it required longer flight durations. Tree height, DBH, and crown width in Pinus elliottii were all under

References

[1]  熊启慧, 靳藏馥, 张露, 等. 两种源湿地松苗木生长特性和生理生态性状[J]. 江西农业大学学报, 2023, 45(2): 252-262.
[2]  冯玥, 胡如芳, 杨亮. 湿地松年产脂量与气候因子的相关性研究[J]. 特种经济动植物, 2023, 26(8): 66-69.
[3]  高宇琪, 夏梦洁, 刘军, 等. 引种湿地松生长不良原因及树势恢复措施[J]. 林业科技通讯, 2024(7): 54-56.
[4]  梁轩, 王耀力, 常青, 等. 基于时空重建的森林林木形态监测算法研究[J]. 电子设计工程, 2023, 31(22): 26-31.
[5]  石永磊, 周凯, 申鑫, 等. 基于无人机遥感的林木表型监测进展与展望[J]. 中南林业科技大学学报, 2023, 43(11): 13-27.
[6]  韩蕊. 基于无人机影像和激光雷达的测树因子提取方法研究[D]: [硕士学位论文]. 哈尔滨: 东北林业大学, 2022.
[7]  周梅, 李春干, 杨承伶, 等. 无人机激光雷达人工林参数估测试验[J]. 林业资源管理, 2023(3): 90-97.
[8]  Yao, Z., Chai, G., Lei, L., Jia, X. and Zhang, X. (2023) Individual Tree Species Identification and Crown Parameters Extraction Based on Mask R-CNN: Assessing the Applicability of Unmanned Aerial Vehicle Optical Images. Remote Sensing, 15, Article 5164.
https://doi.org/10.3390/rs15215164
[9]  朱思名, 王振锡, 裴媛, 等. 基于无人机影像的天山云杉林冠幅提取及蓄积量反演[J]. 干旱区资源与环境, 2020, 34(10): 160-165.
[10]  Gao, T., Gao, Z., Sun, B., Qin, P., Li, Y. and Yan, Z. (2022) An Integrated Method for Estimating Forest-Canopy Closure Based on UAV Lidar Data. Remote Sensing, 14, Article 4317.
https://doi.org/10.3390/rs14174317
[11]  王越, 何诚, 刘柏良, 等. 基于无人机倾斜摄影技术的单木参数提取及胸径模型构建[J]. 西南林业大学学报(自然科学), 2022, 42(1): 166-173.
[12]  Birdal, A.C., Avdan, U. and Türk, T. (2017) Estimating Tree Heights with Images from an Unmanned Aerial Vehicle. Geomatics, Natural Hazards and Risk, 8, 1144-1156.
https://doi.org/10.1080/19475705.2017.1300608
[13]  张静, 郭思梦, 韩迎春, 等. 基于无人机RGB图像的棉花产量估算[J]. 中国农业科技导报, 2022, 24(11): 112-120.
[14]  李小伟. 无人机倾斜摄影测量技术在林区植被恢复治理中的应用[J]. 测绘与空间地理信息, 2024, 47(1): 222-224.
[15]  钟雷文. 倾斜摄影三维实景建模与修模效果分析——基于大疆智图与Context Capture、模方与Meshmixer[J]. 能源与环境, 2021(6): 85-87.
[16]  Gao, L., Zhao, Y., Han, J. and Liu, H. (2022) Research on Multi-View 3D Reconstruction Technology Based on SFM. Sensors, 22, Article 4366.
https://doi.org/10.3390/s22124366
[17]  Chaudhry, M.H., Ahmad, A., Gulzar, Q., Farid, M.S., Shahabi, H. and Al-Ansari, N. (2021) Assessment of DSM Based on Radiometric Transformation of UAV Data. Sensors, 21, Article 1649.
https://doi.org/10.3390/s21051649
[18]  吴天冬, 戚澍. 基于OpenCV的桉树人工林林木株数识别与统计研究[J]. 林业科技, 2020, 45(5): 37-38.
[19]  Moe, K.T., Owari, T., Furuya, N., Hiroshima, T. and Morimoto, J. (2020) Application of UAV Photogrammetry with Lidar Data to Facilitate the Estimation of Tree Locations and DBH Values for High-Value Timber Species in Northern Japanese Mixed-Wood Forests. Remote Sensing, 12, Article 2865.
https://doi.org/10.3390/rs12172865
[20]  胡磊. 基于手持LiDAR的林木参数提取研究[D]: [硕士学位论文]. 武汉: 华中农业大学, 2023.
[21]  袁一钦, 李浪, 姚西文, 等. 光学遥感图像目标检测数据集综述[J]. 遥感学报, 2023, 27(12): 2671-2687.
[22]  罗壮, 李明, 张德朝. 结合边界约束网络和分水岭分割算法的建筑物提取[J]. 遥感学报, 2022, 26(7): 1459-1468.
[23]  徐华东, 陈文静, 刘华. 基于三维激光扫描的单木胸径和树高提取[J]. 森林与环境学报, 2019, 39(5): 524-529.
[24]  Iizuka, K., Kosugi, Y., Noguchi, S. and Iwagami, S. (2022) Toward a Comprehensive Model for Estimating Diameter at Breast Height of Japanese Cypress (Chamaecyparis obtusa) Using Crown Size Derived from Unmanned Aerial Systems. Computers and Electronics in Agriculture, 192, Article 106579.
https://doi.org/10.1016/j.compag.2021.106579
[25]  陈浩, 罗扬. 马尾松树高-胸径非线性混合效应模型构建[J]. 森林与环境学报, 2021, 41(4): 439-448.
[26]  张玉薇, 张超, 王娟, 等. 基于UAV遥感的单木冠幅提取及胸径估算模型研究[J]. 林业资源管理, 2021(3): 67-75.
[27]  王小兰, 陈甲瑞, 邢震, 等. 藏东南高山松胸径与冠径的相关性分析及应用研究[J]. 林业资源管理, 2019(1): 63-69.
[28]  Song, Z., Tomasetto, F., Niu, X., Yan, W.Q., Jiang, J. and Li, Y. (2022) Enabling Breeding Selection for Biomass in Slash Pine Using UAV-Based Imaging. Plant Phenomics, 2022, Article ID: 9783785.
https://doi.org/10.34133/2022/9783785
[29]  杨奇欣, 赖凤香, 何佳春, 等. 不同抗感水稻品种对褐飞虱胁迫的高光谱响应特征[J]. 中国水稻科学, 2024, 38(1): 81-90.
[30]  吴媚, 顾赛赛. 变异系数的统计推断及其应用[J]. 铜仁学院学报, 2010, 4(1): 139-141+144.
[31]  Yang, K., Mo, J., Luo, S., Peng, Y., Fang, S., Wu, X., et al. (2023) Estimation of Rice Aboveground Biomass by UAV Imagery with Photosynthetic Accumulation Models. Plant Phenomics, 5, Article 56.
https://doi.org/10.34133/plantphenomics.0056
[32]  罗达, 林杭生, 金钊, 等. 无人机数字摄影测量与激光雷达在地形地貌与地表覆盖研究中的应用及比较[J]. 地球环境学报, 2019, 10(3): 213-226.
[33]  于海洋, 辛菁锴, 王晓梅, 等. 红松亲本无性系生长性状变异选择研究[J]. 防护林科技, 2023(4): 63-67.
[34]  曾世伟, 侯学会, 王宗良, 等. 基于无人机遥感的作物表型参数获取和应用研究进展[J]. 山东农业科学, 2024, 56(4): 172-180.
[35]  Gyawali, A., Aalto, M., Peuhkurinen, J., Villikka, M. and Ranta, T. (2022) Comparison of Individual Tree Height Estimated from Lidar and Digital Aerial Photogrammetry in Young Forests. Sustainability, 14, Article 3720.
https://doi.org/10.3390/su14073720
[36]  Xu, Z., Shen, X. and Cao, L. (2023) Extraction of Forest Structural Parameters by the Comparison of Structure from Motion (SFM) and Backpack Laser Scanning (BLS) Point Clouds. Remote Sensing, 15, Article 2144.
https://doi.org/10.3390/rs15082144
[37]  Zhang, X., Bao, Y., Wang, D., Xin, X., Ding, L., Xu, D., et al. (2021) Using UAV Lidar to Extract Vegetation Parameters of Inner Mongolian Grassland. Remote Sensing, 13, Article 656.
https://doi.org/10.3390/rs13040656
[38]  Che, Y., Wang, Q., Xie, Z., Zhou, L., Li, S., Hui, F., et al. (2020) Estimation of Maize Plant Height and Leaf Area Index Dynamics Using an Unmanned Aerial Vehicle with Oblique and Nadir Photography. Annals of Botany, 126, 765-773.
https://doi.org/10.1093/aob/mcaa097
[39]  卯光宪, 谭伟, 柴宗政, 等. 基于BP神经网络的马尾松人工林胸径-树高模型预测[J]. 浙江农林大学学报, 2020, 37(4): 752-760.
[40]  彭叶青, 洪大伟, 产启福, 等. 基于无人机多光谱的湿地松生长性状遗传评价[J]. 安徽农业大学学报, 2023, 50(5): 758-763.
[41]  杨贵军, 李长春, 于海洋, 等. 农用无人机多传感器遥感辅助小麦育种信息获取[J]. 农业工程学报, 2015, 31(21): 184-190.
[42]  Zhou, L., Meng, R., Tan, Y., Lv, Z., Zhao, Y., Xu, B., et al. (2022) Comparison of UAV-Based Lidar and Digital Aerial Photogrammetry for Measuring Crown-Level Canopy Height in the Urban Environment. Urban Forestry & Urban Greening, 69, Article 127489.
https://doi.org/10.1016/j.ufug.2022.127489
[43]  Zhou, X. and Zhang, X. (2020) Individual Tree Parameters Estimation for Plantation Forests Based on UAV Oblique Photography. IEEE Access, 8, 96184-96198.
https://doi.org/10.1109/access.2020.2994911
[44]  Yang, Z., Liu, Q., Luo, P., Ye, Q., Duan, G., Sharma, R.P., et al. (2020) Prediction of Individual Tree Diameter and Height to Crown Base Using Nonlinear Simultaneous Regression and Airborne Lidar Data. Remote Sensing, 12, Article 2238.
https://doi.org/10.3390/rs12142238
[45]  Xiang, B., Li, B. and Isik, F. (2003) Time Trend of Genetic Parameters in Growth Traits of Pinus taeda L. Silvae genetica, 52, 114-120.
[46]  Xie, C. and Yang, C. (2020) A Review on Plant High-Throughput Phenotyping Traits Using UAV-Based Sensors. Computers and Electronics in Agriculture, 178, Article 105731.
https://doi.org/10.1016/j.compag.2020.105731

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133