全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于STM32的非接触物体尺寸形态测量系统的设计
Design of a Non-Contact Object Size and Morphology Measurement System Based on STM32

DOI: 10.12677/sea.2024.136087, PP. 844-852

Keywords: STM32,非接触,形态测量,图像处理,激光测距
STM32
, Non-Contact Measurement, Morphology Measurement, Image Processing, Laser Sensing

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着工业自动化进程的不断推进,产品的尺寸形态检测成为提升制造业竞争力的核心环节。针对传统的接触式物体测量方法测量效率低、表面损伤大、适应性弱等问题,本文提出一种基于STM32F103C8T6单片机的非接触物体尺寸形态测量系统。该系统以MG996R舵机云台为运行载体,采用OpenMV4和VL53L1X激光测距传感器作为非接触检测单元,以实现测量目标物体颜色、形状、尺寸及距离等信息的功能,并将这些测量结果实时显示在OLED模块上。测试结果表明,该装置准确识别目标物体的颜色、形状的成功率为90%,得到的物体尺寸平均误差为0.16 cm、显示距离的平均误差为0.76 cm、激光笔指示中心与目标图形实际中心平均偏差为0.086 cm。该系统能够满足工业自动化检测的实际需求,为提升制造业的智能化水平提供了有效的技术支持。
With the continuous advancement of industrial automation, dimensional and morphological measurement of products has become a critical factor in enhancing manufacturing competitiveness. To address the issues of low efficiency, surface damage, and poor adaptability associated with traditional contact-based measurement methods, this paper proposes a non-contact object dimension and morphology measurement system based on the STM32F103C8T6 microcontroller. The system takes the MG996R servo pan-tilt as its operating carrier and employs an OpenMV4 module along with a VL53L1X laser ranging sensor as the non-contact detection unit. It is capable of measuring information such as the color, shape, dimensions, and distance of target objects, with real-time results displayed on an OLED screen. Test results indicate that the device accurately identifies the color and shape of target objects with a success rate of 90%. The average error in object size measurement is 0.16 cm, the average error in the displayed distance is 0.76 cm, and the average deviation between the laser pointer center and the actual center of the target shape is 0.86 cm. This system effectively meets the practical requirements of industrial automation inspection, providing robust technical support for enhancing the intelligence level of the manufacturing industry.

References

[1]  李晨宇. 面向工业质检的数据湖基础设施建设最佳实践[J]. 中国集成电路, 2024, 33(10): 33-36.
[2]  杨怀锋. 基于多模态感知技术的隧道巡检机器人系统设计[J]. 智能物联技术, 2024, 56(5): 66-71.
[3]  张梅, 陈风林. 三维数字建模技术在产品设计中的应用[J]. 办公自动化, 2024, 29(21): 54-56.
[4]  陈静静. 大数据技术在智能医疗器械预防性维护中的应用[J]. 电子技术, 2024, 53(8): 182-183.
[5]  刘远桃, 秦龙, 杨海能. 基于机器视觉的工业机器人分拣技术研究[J]. 机电工程技术, 2024, 53(9): 173-176.
[6]  王敬艳. 基于三维激光扫描技术的非接触测量框架模型的构建与研究[J]. 数字技术与应用, 2014(7): 73.
[7]  Yuan, Z.H., Xu, M.Y. and Qi, X.X. (2014) The Bearing Vibration Signal Collecting System Based on STM32F103C8T6. Advanced Materials Research, 971, 1376-1379.
https://doi.org/10.4028/www.scientific.net/amr.971-973.1376
[8]  Nguyen, V.N., Jenssen, R. and Roverso, D. (2018) Automatic Autonomous Vision-Based Power Line Inspection: A Review of Current Status and the Potential Role of Deep Learning. International Journal of Electrical Power & Energy Systems, 99, 107-120.
https://doi.org/10.1016/j.ijepes.2017.12.016
[9]  郭履宝, 刘子国, 徐贤炜, 等. 非接触物体尺寸形态测量系统[J]. 单片机与嵌入式系统应用, 2021, 21(9): 73-77.
[10]  陈宇翔. 基于超级电容和OpenMV4的无线充电循迹电动小车设计[J]. 集成电路应用, 2021, 38(11): 10-12.
[11]  黄立刚, 贾晓蓉, 曹钰, 等. 手持式激光测距仪示值误差的不确定度评定[J]. 测绘, 2024, 47(5): 266-268.
[12]  任帅阳, 高爱民, 张勇, 等. 六旋翼植保无人机飞行框架的结构设计与试验[J]. 安徽农业大学学报, 2022, 49(1): 137-143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133