全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Normalized Ground State Solutions to Fractional Schr?dinger Equations with?General Nonlinearities

DOI: 10.4236/oalib.1112925, PP. 1-17

Keywords: Fractional Schrödinger Equation, Normalized Solution, Constrained Minimization

Full-Text   Cite this paper   Add to My Lib

Abstract:

This paper investigates the existence of normalized solutions to a fractional Schr?dinger equation with combined nonlinearities. In previous studies, the equation -Δu γu=g(u) ❘u❘q-2u. where N≥3,2Lthe supercritical cases, we employ the Sobolev subcritical approximation method to establish the existence of normalized ground-state solutions.

References

[1]  Di Nezza, E., Palatucci, G. and Valdinoci, E. (2012) Hitchhiker's Guide to the Fractional Sobolev Spaces. Bulletin des Sciences Mathématiques, 136, 521-573. https://doi.org/10.1016/j.bulsci.2011.12.004
[2]  Silvestre, L. (2006) Regu-larity of the Obstacle Problem for a Fractional Power of the Laplace Operator. Communications on Pure and Applied Mathematics, 60, 67-112. https://doi.org/10.1002/cpa.20153
[3]  Devillanova, G. and Marano, G.C. (2016) A Free Fractional Viscous Oscillator as a Forced Standard Damped Vi-bration. Fractional Calculus and Applied Analysis, 19, 319-356. https://doi.org/10.1515/fca-2016-0018
[4]  Frank, R.L., Lenzmann, E. and Silvestre, L. (2015) Uniqueness of Radial Solutions for the Fractional Laplacian. Communications on Pure and Applied Mathematics, 69, 1671-1726. https://doi.org/10.1002/cpa.21591
[5]  Jeanjean, L. (1997) Existence of So-lutions with Prescribed Norm for Semilinear Elliptic Equations. Nonlinear Anal-ysis: Theory, Methods & Applications, 28, 1633-1659. https://doi.org/10.1016/s0362-546x(96)00021-1
[6]  Hirata, J. and Tanaka, K. (2019) Nonlinear Scalar Field Equations with L2 Constraint: Mountain Pass and Symmetric Mountain Pass Approaches. Advanced Nonlinear Studies, 19, 263-290. https://doi.org/10.1515/ans-2018-2039
[7]  Jeanjean, L. and Lu, S. (2019) Nonradial Normalized Solutions for Nonlinear Scalar Field Equations. Nonlinearity, 32, 4942-4966. https://doi.org/10.1088/1361-6544/ab435e
[8]  Guo, Y., Luo, Y. and Zhang, Q. (2018) Minimizers of Mass Critical Hartree Energy Functionals in Bounded Domains. Journal of Differential Equations, 265, 5177-5211. https://doi.org/10.1016/j.jde.2018.06.032
[9]  Noris, B., Tavares, H. and Verzini, G. (2019) Normalized Solutions for Nonlinear Schrödinger Systems on Bounded Domains. Nonlinearity, 32, 1044-1072. https://doi.org/10.1088/1361-6544/aaf2e0
[10]  Soave, N. (2020) Normal-ized Ground States for the NLS Equation with Combined Nonlinearities. Journal of Differential Equations, 269, 6941-6987. https://doi.org/10.1016/j.jde.2020.05.016
[11]  Zhang, P. and Han, Z. (2022) Normalized Solutions to a Kind of Fractional Schrödinger Equation with a Criti-cal Nonlinearity. Zeitschrift für angewandte Mathematik und Physik, 73, Article No. 149. https://doi.org/10.1007/s00033-022-01792-y
[12]  Ding, Y. and Zhong, X. (2022) Normalized Solution to the Schrödinger Equation with Poten-tial and General Nonlinear Term: Mass Super-Critical Case. Journal of Differen-tial Equations, 334, 194-215. https://doi.org/10.1016/j.jde.2022.06.013
[13]  Guo, L. and Li, Q. (2021) Multiple High Energy Solutions for Fractional Schrödinger Equation with Critical Growth. Calculus of Variations and Partial Differential Equations, 61, Article No. 15. https://doi.org/10.1007/s00526-021-02122-2
[14]  Felmer, P., Quaas, A. and Tan, J. (2012) Positive Solutions of the Nonlinear Schrödinger Equation with the Fractional Laplacian. Proceedings of the Royal Society of Edinburgh: Section A Mathematics, 142, 1237-1262. https://doi.org/10.1017/s0308210511000746
[15]  Felmer, P. and Torres, C. (2014) Radial Symmetry of Ground States for a Regional Fractional Nonlinear Schrödinger Equation. Communications on Pure and Applied Analysis, 13, 2395-2406. https://doi.org/10.3934/cpaa.2014.13.2395
[16]  Ye, F., Yu, S. and Tang, C. (2024) Limit Profiles and the Existence of Bound-States in Exterior Domains for Fractional Choquard Equations with Critical Exponent. Advances in Nonlinear Analysis, 13, Article ID: 20240020. https://doi.org/10.1515/anona-2024-0020
[17]  Sickel, W. and Skrzypczak, L. (2000) Radial Subspaces of Besov and Lizorkin-Triebel Classes: Extended Strauss Lemma and Compactness of Embeddings. The Journal of Fourier Analy-sis and Applications, 6, 639-662. https://doi.org/10.1007/bf02510700
[18]  Berestycki, H. and Lions, P. (1983) Nonlinear Scalar Field Equations, I Existence of a Ground State. Archive for Ra-tional Mechanics and Analysis, 82, 313-345. https://doi.org/10.1007/bf00250555
[19]  Shuai, W. and Wang, Q. (2015) Existence and Asymptotic Behavior of Sign-Changing Solutions for the Nonlinear Schrödinger-Poisson System in  . Zeitschrift für angewandte Mathematik und Physik, 66, 3267-3282. https://doi.org/10.1007/s00033-015-0571-5

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133