全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Epidemiology and Genetic Evolution of Influenza B Viruses Circulating in the Democratic Republic of Congo from 2015 to 2022: Implication of Vaccination

DOI: 10.4236/ojrd.2025.151001, PP. 1-18

Keywords: Epidemiology, Genetic Evolution, Influenza B Viruses, DRC

Full-Text   Cite this paper   Add to My Lib

Abstract:

Introduction: Influenza A (Flu A) and B (Flu B) viruses are responsible for severe acute respiratory infections (SARI) worldwide, with a morbidity of 5 million and mortality of 29,000 - 650,000 deaths per year. Influenza B viruses are an important cause of respiratory infections in humans, but they tend to be underappreciated due to the predominance of Influenza A. No molecular study on Influenza B has been carried out in the DRC. This study was conducted to document the molecular evolution of the hemagglutinin (HA) gene in the circulating Influenza B strains over the eight consecutive epidemic seasons (from 2015 to 2022). Methods: Samples were collected from outpatient cases suspected of influenza-like illness (ILI) and in all hospitalized patients with SARI from January 2015 to December 2022. Molecular analysis was done to determine influenza type and subtype, and then segments encoding the HA gene of Influenza B viruses were performed. Results: Of 8497 samples collected and tested, 639 (7.5%) were positive for influenza viruses, including 389 (60.8%) for Influenza A viruses and 248 (38,8%) for Influenza B viruses. Of the positive Influenza B samples, 91 were sequenced, including 26 belonging to the B/Yamagata lineage and 65 to the B/Victoria lineage. The HA gene of Influenza B viruses circulating in the DRC showed deletions in the HA1 region. Molecular analysis of Influenza B viruses reflects the genetic diversity of Influenza B/Yam virus clades (Y2, Y3, Y3V1A) alternating with Influenza B/Victoria virus clades (V1A, V1A.3) depending on the year and influenza seasons. The phylogenetic analysis of these Influenza B strains shows compatibility with the corresponding vaccine strains that the WHO had validated for each influenza season. Conclusion: This study underscores the importance of continuous molecular surveillance of Influenza B viruses in the DRC to understand their epidemiology and evolutionary dynamics. Identifying mutations, such as HA deletions, is critical for assessing their impact on transmissibility vaccine efficacy and guiding effective vaccination and control strategies.

References

[1]  Paul Glezen, W., Schmier, J.K., Kuehn, C.M., Ryan, K.J. and Oxford, J. (2013) The Burden of Influenza B: A Structured Literature Review. American Journal of Public Health, 103, e43-e51.
https://doi.org/10.2105/ajph.2012.301137
[2]  WHO (2019) Influenza (Seasonal) Fact Sheet.
http://www.who.int/mediacentre/factsheets/fs211/en/
[3]  Seleka, M., Treurnicht, F.K., Tempia, S., Hellferscee, O., Mtshali, S., Cohen, A.L., et al. (2017) Epidemiology of Influenza B/Yamagata and B/Victoria Lineages in South Africa, 2005-2014. PLOS ONE, 12, e0177655.
https://doi.org/10.1371/journal.pone.0177655
[4]  Caini, S., El-Guerche Séblain, C., Ciblak, M.A. and Paget, J. (2018) Epidemiology of Seasonal Influenza in the Middle East and North Africa Regions, 2010-2016: Circulating Influenza A and B Viruses and Spatial Timing of Epidemics. Influenza and Other Respiratory Viruses, 12, 344-352.
https://doi.org/10.1111/irv.12544
[5]  Sambala, E.Z., Mdolo, A., Banda, R., Phiri, A., Wiyeh, A.B. and Wiysonge, C.S. (2018) Burden of Seasonal Influenza in Sub-Saharan Africa: A Systematic Review Protocol. BMJ Open, 8, e022949.
https://doi.org/10.1136/bmjopen-2018-022949
[6]  Emukule, G.O., Otiato, F., Nyawanda, B.O., Otieno, N.A., Ochieng, C.A., Ndegwa, L.K., et al. (2019) The Epidemiology and Burden of Influenza B/Victoria and B/Yamagata Lineages in Kenya, 2012-2016. Open Forum Infectious Diseases, 6, ofz421.
https://doi.org/10.1093/ofid/ofz421
[7]  Rota, P.A., Wallis, T.R., Harmon, M.W., Rota, J.S., Kendal, A.P. and Nerome, K. (1990) Cocirculation of Two Distinct Evolutionary Lineages of Influenza Type B Virus since 1983. Virology, 175, 59-68.
https://doi.org/10.1016/0042-6822(90)90186-u
[8]  Shaw, M.W., Xu, X., Li, Y., Normand, S., Ueki, R.T., Kunimoto, G.Y., et al. (2002) Reappearance and Global Spread of Variants of Influenza B/Victoria/2/87 Lineage Viruses in the 2000-2001 and 2001-2002 Seasons. Virology, 303, 1-8.
https://doi.org/10.1006/viro.2002.1719
[9]  Chen, R. and Holmes, E.C. (2008) The Evolutionary Dynamics of Human Influenza B Virus. Journal of Molecular Evolution, 66, 655-663.
https://doi.org/10.1007/s00239-008-9119-z
[10]  McCullers, J.A., Saito, T. and Iverson, A.R. (2004) Multiple Genotypes of Influenza B Virus Circulated between 1979 and 2003. Journal of Virology, 78, 12817-12828.
https://doi.org/10.1128/jvi.78.23.12817-12828.2004
[11]  Langat, P., Raghwani, J., Dudas, G., Bowden, T.A., Edwards, S., Gall, A., et al. (2017) Genome-Wide Evolutionary Dynamics of Influenza B Viruses on a Global Scale. PLOS Pathogens, 13, e1006749.
https://doi.org/10.1371/journal.ppat.1006749
[12]  McCullers, J.A., Wang, G.C., He, S. and Webster, R.G. (1999) Reassortment and Insertion-Deletion Are Strategies for the Evolution of Influenza B Viruses in Nature. Journal of Virology, 73, 7343-7348.
https://doi.org/10.1128/jvi.73.9.7343-7348.1999
[13]  Bedford, T., Suchard, M.A., Lemey, P., Dudas, G., Gregory, V., Hay, A.J., et al. (2014) Integrating Influenza Antigenic Dynamics with Molecular Evolution. eLife, 3, e01914.
https://doi.org/10.7554/elife.01914
[14]  Dawa, J., Chaves, S.S., Ba Nguz, A., Kalani, R., Anyango, E., Mutie, D., et al. (2019) Developing a Seasonal Influenza Vaccine Recommendation in Kenya: Process and Challenges Faced by the National Immunization Technical Advisory Group (NITAG). Vaccine, 37, 464-472.
https://doi.org/10.1016/j.vaccine.2018.11.062
[15]  Centers for Disease Control and Prevention (CDC) (2014) CDC Real-Time RT-PCR Protocol for Detection and Characterization of Influenza B Viruses. CDC.
[16]  Shepard, S.S., Meno, S., Bahl, J., Wilson, M.M., Barnes, J. and Neuhaus, E. (2016) Viral Deep Sequencing Needs an Adaptive Approach: IRMA, the Iterative Refinement Meta-Assembler. BMC Genomics, 17, Article No. 708.
https://doi.org/10.1186/s12864-016-3030-6
[17]  https://www.gisaid.org
[18]  Nei, M. and Kumar, S. (2000) Molecular Evolution and Phylogenetics. Oxford University Press.
[19]  Tamura, K., Stecher, G. and Kumar, S. (2021) MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Molecular Biology and Evolution, 38, 3022-3027.
https://doi.org/10.1093/molbev/msab120
[20]  Rivas, M.J., Alegretti, M., Cóppola, L., Ramas, V., Chiparelli, H. and Goñi, N. (2020) Epidemiology and Genetic Variability of Circulating Influenza B Viruses in Uruguay, 2012-2019. Microorganisms, 8, Article 591.
https://doi.org/10.3390/microorganisms8040591
[21]  Touré, C.T., Fall, A., Andriamandimby, S.F., Jallow, M.M., Goudiaby, D., Kiori, D., et al. (2022) Epidemiology and Molecular Analyses of Influenza B Viruses in Senegal from 2010 to 2019. Viruses, 14, Article 1063.
https://doi.org/10.3390/v14051063
[22]  Paul Glezen, W. (2014) Editorial Commentary: Changing Epidemiology of Influenza B Virus. Clinical Infectious Diseases, 59, 1525-1526.
https://doi.org/10.1093/cid/ciu668
[23]  Baker, S.F., Nogales, A., Finch, C., Tuffy, K.M., Domm, W., Perez, D.R., Topham, D.J. and Mar-tínez-Sobrido, L. (2014) Intertypic Reassortment of Influenza A and B Viruses through Compatible Viral Packaging Signals. Journal of Virology, 88, 10778-10791.
[24]  Dudas, G., Bedford, T., Lycett, S. and Rambaut, A. (2014) Reassortment between Influenza B Lineages and the Emergence of a Coadapted PB1-PB2-HA Gene Complex. Molecular Biology and Evolution, 32, 162-172.
https://doi.org/10.1093/molbev/msu287
[25]  Chen, R. and Holmes, E.C. (2008) The Evolutionary Dynamics of Human Influenza B Virus. Journal of Molecular Evolution, 66, 655-663.
https://doi.org/10.1007/s00239-008-9119-z
[26]  Mikheeva, A. and Ghendon, Y.Z. (1982) Intrinsic Interference between Influenza A and B Viruses. Archives of Virology, 73, 287-294.
https://doi.org/10.1007/bf01318082
[27]  Vijaykrishna, D., Holmes, E.C., Joseph, U., Fourment, M., Su, Y.C., Halpin, R., et al. (2015) The Contrasting Phylodynamics of Human Influenza B Viruses. eLife, 4, e05055.
https://doi.org/10.7554/elife.05055
[28]  Nyasimi, F.M., Owuor, D.C., Ngoi, J.M., Mwihuri, A.G., Otieno, G.P., Otieno, J.R., et al. (2020) Epidemiological and Evolutionary Dynamics of Influenza B Virus in Coastal Kenya as Revealed by Genomic Analysis of Strains Sampled over a Single Season. Virus Evolution, 6, veaa045.
https://doi.org/10.1093/ve/veaa045
[29]  Puzelli, S., Di Martino, A., Facchini, M., Fabiani, C., Calzoletti, L., Di Mario, G., et al. (2019) Co-Circulation of the Two Influenza B Lineages during 13 Consecutive Influenza Surveillance Seasons in Italy, 2004-2017. BMC Infectious Diseases, 19, Article No. 990.
https://doi.org/10.1186/s12879-019-4621-z
[30]  Caini, S., Kusznierz, G., Garate, V.V., Wangchuk, S., Thapa, B., de Paula Júnior, F.J., et al. (2019) The Epidemiological Signature of Influenza B Virus and Its B/Victoria and B/Yamagata Lineages in the 21st Century. PLOS ONE, 14, e0222381.
https://doi.org/10.1371/journal.pone.0222381
[31]  Vajo, Z. and Torzsa, P. (2022) Extinction of the Influenza B Yamagata Line during the COVID Pandemic—Implications for Vaccine Composition. Viruses, 14, Article 1745.
https://doi.org/10.3390/v14081745
[32]  Barr, I.G., Vijaykrishna, D. and Sullivan, S.G. (2016) Differential Age Susceptibility to Influenza B/Victoria Lineage Viruses in the 2015 Australian Influenza Season. Eurosurveillance, 21.
https://doi.org/10.2807/1560-7917.es.2016.21.4.30118
[33]  Tsedenbal, N., Tsend-Ayush, A., Badarch, D., Jav, S. and Pagbajab, N. (2018) Influenza B Viruses Circulated during Last 5 Years in Mongolia. PLOS ONE, 13, e0206987.
https://doi.org/10.1371/journal.pone.0206987
[34]  Coates, B.M., Staricha, K.L., Wiese, K.M. and Ridge, K.M. (2015) Influenza A Virus Infection, Innate Immunity, and Childhood. JAMA Pediatrics, 169, 956-963.
https://doi.org/10.1001/jamapediatrics.2015.1387
[35]  Xu, C., Chan, K., Tsang, T.K., Fang, V.J., Fung, R.O.P., Ip, D.K.M., et al. (2015) Comparative Epidemiology of Influenza B Yamagata-and Victoria-Lineage Viruses in Households. American Journal of Epidemiology, 182, 705-713.
https://doi.org/10.1093/aje/kwv110
[36]  Virk, R.K., Jayakumar, J., Mendenhall, I.H., Moorthy, M., Lam, P., Linster, M., et al. (2019) Divergent Evolutionary Trajectories of Influenza B Viruses Underlie Their Contemporaneous Epidemic Activity. Proceedings of the National Academy of Sciences of the United States of America, 117, 619-628.
https://doi.org/10.1073/pnas.1916585116
[37]  Oong, X.Y., Ng, K.T., Lam, T.T., Pang, Y.K., Chan, K.G., Hanafi, N.S., et al. (2015) Epidemiological and Evolutionary Dynamics of Influenza B Viruses in Malaysia, 2012-2014. PLOS ONE, 10, e0136254.
https://doi.org/10.1371/journal.pone.0136254
[38]  Lei, N., Wang, H., Zhang, Y., Zhao, J., Zhong, Y., Wang, Y., et al. (2019) Molecular Evolution of Influenza B Virus during 2011-2017 in Chaoyang, Beijing, Suggesting the Free Influenza Vaccine Policy. Scientific Reports, 9, Article No. 2432.
https://doi.org/10.1038/s41598-018-38105-1
[39]  Rivas, M.J., Alegretti, M., Cóppola, L., Ramas, V., Chiparelli, H. and Goñi, N. (2020) Epidemiology and Genetic Variability of Circulating Influenza B Viruses in Uruguay, 2012-2019. Microorganisms, 8, Article 591.
https://doi.org/10.3390/microorganisms8040591
[40]  Lindstrom, S.E., Hiromoto, Y., Nishimura, H., Saito, T., Nerome, R. and Nerome, K. (1999) Comparative Analysis of Evolutionary Mechanisms of the Hemagglutinin and Three Internal Protein Genes of Influenza B Virus: Multiple Cocirculating Lineages and Frequent Reassortment of the NP, M, and NS Genes. Journal of Virology, 73, 4413-4426.
https://doi.org/10.1128/jvi.73.5.4413-4426.1999

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133