|
长江中游不同典型年水情因子分析
|
Abstract:
水情因子分析是研究后汛期判别的基础,本文通过分析历史长系列数据得到不同典型年下长江中游水情因子的变化规律:① 当发生流域型洪水时,沙市站水位在1954年和1998年7月上旬已超过警戒水位,持续到9月上旬水位才开始逐渐降低到警戒水位以下,1998年8月上旬和中旬水位超保证水位;2020年中下游发生大洪水时,上游来水属于一般洪水,且长江上游梯级水库施行联合调度,荆江河段洪水位较低,沙市站水位仅在7月下旬和8月下旬超过警戒水位;莲花塘水位自6月下旬开始一直超过警戒水位,持续到9月上旬水位才开始逐渐降低到警戒水位以下;四水合成流量有多个洪峰过程,洪峰大,汛期流量变化较大;② 发生区域型洪水时,莲花塘发生超警戒水位洪水的时间主要集中于7月中旬和7月下旬,最晚洪峰出现时间为9月上旬;四水合成基本为多峰且波动较大,直至8月底9月初降低至20,000 m3/s以下;③ 发生流域型枯水时,莲花塘站各典型年最高水位均在7月下旬前出现,四水合成流量变化主要集中在6月份,在7月中下旬流量降低至15,000 m3/s以下。研究成果可为长江中游后汛期动态判别指标构建提供支撑,为实时调度中滚动快速研判当前情汛情及演变趋势、及时优化调整水库动态运行方案提供决策依据。
Water condition factor analysis is the basis of the study of the late flood season discernment, this paper gets different typical years under the middle reaches of the Yangtze River water condition factor change rule through data analysis of historical long series: 1) When basin-type floods occurred, Shashi station water level in 1954 and 1998 in early July exceeded the warning level, continued to the water level in early September and began to gradually reduce to below the warning level. The water level of the first half of August and the mid-August water level exceeded the guaranteed water level in 1998; When big floods occurred in the middle and lower reaches of the river in 2020, water from the upper reaches belonged to the general flood, and the upper reaches of the Yangtze River cascade reservoirs carried out joint scheduling, and the flood level of the Jingjiang River section was low, and the water level at Shashi station only exceeded the warning level in late July and late August; the water level at Lianhuatang exceeded the alert level since late June, and lasted until early September before the water level began to gradually reduce to below the alert level; the four water synthetic flow had multiple flood processes, large flood peaks, and large changes in the flood season flow; 2) When regional-type flood occurred, Lianhuatang floods occurred mainly in middle and late July, the latest flood peaks occurred in early September; the four-water synthesis was basically multi-peak and fluctuations till the end of August and early September, reduced to less than 20,000 m3/s; 3) When basin-type floods occurred, the highest water level at Lianhuatang station of the typical year was in late July, the four-water synthesis of the changes in flow mainly concentrated in June, and the four-water synthesis flow in
[1] | 周新春, 许银山, 冯宝飞. 长江上游干流梯级水库群防洪库容互用性初探[J]. 水科学进展, 2017, 28(3): 421-428. |
[2] | 谢雨祚, 熊丰, 郭生练, 等. 金沙江下游梯级与三峡水库防洪库容互补等效关系研究[J]. 水利学报, 2023, 54(2): 139-147. |
[3] | 张冬冬, 王立海, 李妍清, 等. 多方法集成的三峡水库洪水分期研究[J]. 人民长江, 2022, 53(1): 18-24. |
[4] | 李娜, 郭生练, 王俊, 等. 长江中下游梅雨与三峡水库入库洪水遭遇规律分析[J]. 人民长江, 2022, 53(3): 44-49. |
[5] | 王俊, 郭生练. 三峡水库汛期控制水位及运用条件[J]. 水科学进展, 2020, 31(4): 473-480. |
[6] | 秦智伟, 戴明龙, 陈炼钢, 等. 三峡水库汛期分期洪水特征及成因研究[J]. 人民长江, 2018, 49(22): 1-6. |
[7] | 邹强, 胡挺, 肖扬帆, 等. 三峡水库对城陵矶防洪补偿控制水位研究Ⅰ——需求分析与优化条件[J]. 人民长江, 2024, 55(1): 21-27. |
[8] | 邹强, 胡挺, 饶光辉, 等. 三峡水库对城陵矶防洪补偿控制水位研究Ⅱ——风险分析与运用方案[J]. 人民长江, 2024, 55(2): 1-8+34. |
[9] | 陈雪, 徐富刚, 李琴, 等. 基于水情变化的河流生态流量阈值及其多时间尺度保障率计算[JL]. 水资源保护, 2024, 40(4): 128-136+156. |
[10] | 申幸志, 黄峰, 韩帅, 等. 洞庭湖中枯水期水情变化及其驱动因素[J]. 水文, 2024, 44(1): 70-76. |
[11] | 高华峰, 宋向旭, 周帅. 黑河流域水文特征时空变异规律研究[J]. 水资源开发与管理, 2023, 9(8): 14-19. |
[12] | 邹吉湖, 黄予宁, 黄峰, 等. 东洞庭湖水位模拟及水情变化归因[J]. 水力发电学报, 2023, 42(8): 42-50. |
[13] | 赵海明, 王美荣, 杜龙刚, 等. 2019年北京市汛期雨水情分析[J]. 北京水务, 2019(6): 59-62. |
[14] | 潘佳佳, 郭新蕾, 王涛, 等. 长江源区年际冰水情变化及其影响因子分析[J]. 中国水利水电科学研究院学报(中英文), 2023, 21(1): 64-73. |
[15] | 周静, 万荣荣, 吴兴华, 等. 洞庭湖湿地植被长期格局变化(1987-2016年)及其对水文过程的响应[J]. 湖泊科学, 2020, 32(6): 1723-1735. |
[16] | 易玉茹. 三峡运行背景下洞庭湖水情变化及其驱动因子研究[D]: [硕士学位论文]. 长沙: 湖南大学, 2022. |