全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

纳米流体热毛细对流流型结构及换热机理研究
Study on the Flow Pattern Structure and Heat Transfer Mechanism of Nanofluid Thermocapillary Convection

DOI: 10.12677/aepe.2024.126023, PP. 201-214

Keywords: 纳米流体,热毛细对流,数值模拟,流型结构,换热
Nanofluid
, Thermocapillary Convection, Numerical Simulation, Flow Pattern Structure, Heat Transfer

Full-Text   Cite this paper   Add to My Lib

Abstract:

为了揭示纳米流体热毛细对流的流型结构及其流动换热特性,本文建立了二维矩形区域内纳米流体热毛细对流的数学模型,开展了系统数值研究,获得了矩形腔内热毛细对流的温度场和速度场,分析了传热温差、纳米颗粒的体积分数以及不同材料的米颗粒对热毛细对流的影响。结果表明,在一定范围内,增大传热温差和纳米颗粒的体积分数都可以增大热毛细对流的强度,提升换热强度;当传热温差较大时,矩形腔内会出现扰动,流动变得复杂;纳米流体的换热强弱与Marangoni数的大小呈正相关。
To reveal the flow pattern structure and flow heat transfer characteristics of nanofluid thermocapillary convection, this article establishes a mathematical model of nanofluid thermocapillary convection in a two-dimensional rectangular region, conducts systematic numerical research, obtains the temperature and velocity fields of thermocapillary convection in a rectangular cavity, and analyzes the effects of heat transfer temperature difference, volume fraction of nanoparticles, and different materials of rice particles on thermocapillary convection. The results indicate that within a certain range, increasing the heat transfer temperature difference and the volume fraction of nanoparticles can enhance the strength of thermocapillary convection and improve heat transfer intensity. When the heat transfer temperature difference is large, disturbances will occur inside the rectangular cavity, and the flow becomes more complex. The heat transfer strength of nanofluids is positively correlated with the Marangoni number.

References

[1]  Choi, S.U.S. and Eastman, J. (1995) Enhancing Thermal Conductivity of Fluids with Nanoparticles. ASME International Mechanical Engineering Congress & Exposition, 12-17 November 1995.
[2]  Thomson, J. (1855) XLII. on Certain Curious Motions Observable at the Surfaces of Wine and Other Alcoholic Liquors. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 10, 330-333.
https://doi.org/10.1080/14786445508641982
[3]  Benard, H. (1901) Les tourbillons Cellulaires dan une Nappe Liquide Transportant dela Chaleur par Convection en Regime Permanent. Annales de chimie et de physique, 23, 62-144.
[4]  Block, M.J. (1956) Surface Tension as the Cause of Bénard Cells and Surface Deformation in a Liquid Film. Nature, 178, 650-651.
https://doi.org/10.1038/178650a0
[5]  Pearson, J.R.A. (1958) On Convection Cells Induced by Surface Tension. Journal of Fluid Mechanics, 4, 489-500.
https://doi.org/10.1017/s0022112058000616
[6]  Nield, D.A. (1964) Surface Tension and Buoyancy Effects in Cellular Convection. Journal of Fluid Mechanics, 19, 341-352.
https://doi.org/10.1017/s0022112064000763
[7]  周小明, 淮秀兰, 黄护林. 深径比对双层热毛细浮力对流的影响[J]. 工程热物理学报, 2014, 35(8): 1575-1580.
[8]  张利, 吴春梅, 李友荣. 表面蒸发对环形液池内稳态热毛细对流的影响[J]. 重庆大学学报, 2017, 40(7): 1-8.
[9]  刘佳. 双向温度梯度作用下浮力-热毛细对流的线性稳定性分析[D]: [博士学位论文]. 重庆: 重庆大学, 2019.
[10]  Zebib, A., Homsy, G.M. and Meiburg, E. (1985) High Marangoni Number Convection in a Square Cavity. The Physics of Fluids, 28, 3467-3476.
https://doi.org/10.1063/1.865300
[11]  Hadid, H.B. and Roux, B. (1990) Thermocapillary Convection in Long Horizontal Layers of Low-Prandtl-Number Melts Subject to a Horizontal Temperature Gradient. Journal of Fluid Mechanics, 221, 77-103.
https://doi.org/10.1017/s0022112090003494
[12]  Schwabe, D., Scharmann, A., Preisser, F. and Oeder, R. (1978) Experiments on Surface Tension Driven Flow in Floating Zone Melting. Journal of Crystal Growth, 43, 305-312.
https://doi.org/10.1016/0022-0248(78)90387-1
[13]  Chun, C.-H. and Wuest, W. (1978) A Micro-Gravity Simulation of the Marangoni Convection. Acta Astronautica, 5, 681-686.
https://doi.org/10.1016/0094-5765(78)90047-4
[14]  Garcimartín, A., Mukolobwiez, N. and Daviaud, F. (1997) Origin of Waves in Surface-Tension-Driven Convection. Physical Review E, 56, 1699-1705.
https://doi.org/10.1103/physreve.56.1699
[15]  Velten, R., Schwabe, D. and Scharmann, A. (1991) The Periodic Instability of Thermocapillary Convection in Cylindrical Liquid Bridges. Physics of Fluids A: Fluid Dynamics, 3, 267-279.
https://doi.org/10.1063/1.858135
[16]  周小明, 黄护林. 大尺度环形液池内双层热毛细对流不稳定性[J]. 工程热物理学报, 2011, 32(7): 1195-1198.
[17]  马力, 彭岚, 高健, 朱承志. 旋转和磁场耦合作用对振荡Marangoni-热毛细对流的影响[J]. 重庆大学学报, 2019, 42(9): 1-9.
[18]  Hamilton, R.L. and Crosser, O.K. (1962) Thermal Conductivity of Heterogeneous Two-Component Systems. Industrial & Engineering Chemistry Fundamentals, 1, 187-191.
https://doi.org/10.1021/i160003a005
[19]  Brinkman, H.C. (1952) The Viscosity of Concentrated Suspensions and Solutions. The Journal of Chemical Physics, 20, 571-571.
https://doi.org/10.1063/1.1700493

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133