|
高校课程考试成绩的非均衡多因素方差分析
|
Abstract:
本文基于非均衡数据多因素方差分析理论对高校某公共基础课程考试成绩进行了统计分析。文中先对相关方差分析理论基础进行了综述,然后基于R软件对某课程考试的真实数据集进行了详细的方差分析研究,给出了丰富的图表展示,结果表明本文所设定的两个自变量的交互影响不显著,但学院类别和学生性别对平均成绩影响显著。基于此分析结果,本文给出了一些教学指导建议。
This paper makes a statistical analysis on college course test scores based on the theory of Multi-factor ANOVA of unbalanced data. Firstly, the theoretical basis of relevant ANOVA is summarized, then based on R software, the detailed ANOVA process for a real data sets of a course exam is conducted, a rich chart shows is given, the result shows that the interaction influence of the two independent variables is not significant, but the college category and student gender have a significant influence on the average score. Based on the analysis results, this paper gives some teaching guidance suggestions.
[1] | 董倩倩. 基于spss的《高等数学》期末考试成绩评价与预测[J]. 教育现代化, 2019, 6(85): 242-243+252. |
[2] | 何庆光. 学生考试成绩的统计分析[J]. 广西财政高等专科学校学报, 2004(2): 89-91. |
[3] | 黄培丽. 多元统计在高校学生成绩统计分析中的应用研究[D]: [硕士学位论文]. 西安: 西安建筑科技大学, 2013. |
[4] | 王政宇, 潘晋孝, 赵勇. 多元统计在考试成绩评定中的应用[J]. 华北工学院学报, 2000, 21(3): 277-279. |
[5] | 孙毅, 刘仁云, 王松, 等. 基于多元线性回归模型的考试成绩评价与预测[J]. 吉林大学学报: 信息科学版, 2013, 31(4): 404-408. |
[6] | 谭立云, 张昆龙, 李慧. 基于R语言的数学基础课成绩多元线性回归分析[J]. 黑龙江科技信息, 2014(32): 97. |
[7] | 常广炎. 用Matlab实现高校课程考试成绩方差分析[J]. 电脑编程技巧与维护, 2015(22): 89-91. |
[8] | Mcdonald, J.H. (2009) Handbook of Biological Statistics. 2nd Edition, Sparky House. |
[9] | Smith, C.E. and Cribbie, R. (2014) Factorial Anova with Unbalanced Data: A Fresh Look at the Types of Sums of Squares. Journal of Data Science, 12, 385-403. https://doi.org/10.6339/JDS.201407_12(3).0001 |
[10] | Searle, S. (1987) Linear Models for Unbalanced Data. John Wiley and Sons Inc. |
[11] | 段重阳, 陈平雁. 固定效应方差分析中四种离差平方和的定义与探讨[J]. 中国卫生统计, 2013, 30(4): 470-475. |
[12] | Langsrud, Ø. (2003) ANOVA for Unbalanced Data: Use Type II Instead of Type III Sums of Squares. Kluwer Academic Publishers. |