|
物流数据分析与AI算法应用课程探索与思考
|
Abstract:
本课程旨在培养学生掌握物流领域的数据分析技能和AI算法应用能力,注重理论与实践的结合。课程内容涵盖数据挖掘、机器学习、优化算法等前沿技术,结合实际物流场景应用,帮助学生解决复杂物流问题。通过案例研究和项目驱动,强化学生的实践操作能力。课程的主要建设目标是培养复合型人才,提升学生的实践能力和就业竞争力,确保课程内容紧跟物流行业的发展需求。课程内容包括基础理论、数据分析、AI算法及其在物流中的应用等模块,利用数字化教材和在线平台支持自主学习,提供丰富的实际案例供学生实践。此外,采用混合式教学模式,通过线上自学与线下讨论、案例分析相结合,提高学生的互动参与度和综合应用能力。评估体系涵盖过程性与终结性评估,帮助学生不断改进学习效果。课程将加强与企业的合作,提供更多实习机会,确保学生能够应对快速发展的技术和行业需求。
This course is designed to equip students with data analysis skills and AI algorithm application abilities in the field of logistics, with a strong emphasis on the integration of theory and practice. The curriculum covers advanced technologies such as data mining, machine learning, and optimization algorithms, and applies them to real-world logistics scenarios to help students solve complex logistics problems. Through case studies and project-driven learning, the course aims to strengthen students’ practical skills. The main objective of the course is to develop well-rounded professionals, enhance students’ practical abilities and boost their employability by ensuring that the course content aligns with the evolving needs of the logistics industry. The curriculum includes modules on foundational theories, data analysis, AI algorithms, and their applications in logistics, supported by digital textbooks and online platforms to facilitate independent learning. A rich array of practical cases is provided to allow students to gain hands-on experience. The course adopts a blended learning approach, combining online self-study with in-person discussions and case analysis to increase student engagement and enhance their ability to apply knowledge comprehensively. The assessment system includes both formative and summative evaluations, enabling continuous improvement in student learning outcomes. Additionally, the course will strengthen partnerships with enterprises, offering more internship opportunities to ensure that students are prepared to meet the fast-evolving technological and industry demands.
[1] | 肖焕彬, 初良勇, 林赟敏. 人工智能技术在供应链物流领域的应用[J]. 价值工程, 2019, 38(25): 154-156. |
[2] | 朱光. 新时代背景下铁路运输智慧物流发展分析[J]. 中国物流与采购, 2024, 1(15): 71-72. |
[3] | 刘国岩. 供应链重大突发事件应急管理的决策机制与数据挖掘技术研究[J]. 现代物业(中旬刊), 2011, 10(1): 66-67. |
[4] | 王芸芸. 计算机智能在物流运输中的应用与优化研究[J]. 中国储运, 2024, 1(8): 185-186. |
[5] | 庞培. 基于机器学习的公众情感网络传播模型及应用研究[D]: [硕士学位论文]. 天津: 天津工业大学, 2019. |
[6] | 宋威, 华子彧. 基于精英驱动粒子群算法的快递配送路线优化方法[P]. 中国专利, CN201911306510.0. 2020-04-21. |
[7] | 王洋. 物联网技术及其在智能物流中的应用研究[J]. 数字化用户, 2014, 1(6): 22-23. |
[8] | 倪伟定, 杜坚民, 蔡日星, 等. 基于大数据技术的供应链管理决策支持系统[P]. 中国专利, CN201610886206.8. 2022-01-21. |
[9] | 崔蕙妍. 信息技术在供应链管理中的应用[J]. 市场调查信息: 综合版, 2022, 1(5): 194-196. |
[10] | 王嘉兴, 马小童, 杨艳梅, 等. 大数据技术在农牧业全产业链建设中的应用分析[J]. 农村科学实验, 2024, 1(2): 147-149. |