全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

碳酸盐岩成储控制因素研究进展
Research Progress on Controlling Factors of Carbonate Reservoir Formation

DOI: 10.12677/ag.2024.1412149, PP. 1588-1603

Keywords: 碳酸盐岩,成岩作用,成岩环境,孔隙演化
Carbonate Rocks
, Diagenesis, Diagenetic Environment, Porosity Evolution

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来,随着对我国碳酸盐岩层系油气形成与成藏规律的深化认识,明确了构造作用、沉积作用、成岩作用和流体作用等多因素耦合过程是控制碳酸盐岩储层规模性、展布特征、质量优劣和可预测性的关键。但碳酸盐岩储层质量评价仍存在主控因素定量表征不足、不同因素差异控储耦合研究不足和孔隙演化模式缺乏系统约束条件等问题。本文基于我国碳酸盐岩储层分布的盆地、层系、沉积相和物性特征汇总分析,从构造作用、沉积作用、成岩作用和流体作用4个方面揭示了碳酸盐岩储层物性控制因素:1) 构造作用主要控制了优质储层的沉积背景和分布;2) 沉积作用主要控制了优质储层的发育规模和物质基础;3) 成岩作用主要控制了优质储层类型和孔隙结构;4) 流体作用主要控制了储层改造方向和部位。鉴于碳酸盐岩成岩作用及孔隙演化的复杂性,未来多重地质背景约束下,结合铸体薄片、阴极发光、扫描电镜、同位素分析、流体包裹体等技术,碳酸盐岩成岩作用及孔隙演化定量化评价将更加完善,成岩模式更具针对性和数据化。
In recent years, with the deepening understanding of the law of hydrocarbon formation and accumulation in Chinese carbonate strata, it is clear that the multi-factor coupling process of structure, sedimentation, diagenesis and fluid is the key to control the scale, distribution characteristics, quality and predictability of carbonate reservoirs. However, there are still some problems in the quality evaluation of carbonate reservoir, such as insufficient quantitative characterization of main controlling factors, insufficient studies on different factors’ controlling reservoir coupling and lack of systematic constraints on pore evolution model. Based on the summary analysis of the characteristics of basin, layer, sedimentary facies and physical properties of carbonate reservoirs in China, this paper reveals the controlling factors of physical properties of carbonate reservoirs from four aspects of structure, sedimentation, diagenesis and fluid: 1) Structure mainly controls the sedimentary setting and distribution of high-quality reservoirs; 2) Deposition mainly controls the development scale and material basis of high-quality reservoirs; 3) Diagenesis mainly controls the high-quality reservoir type and pore structure; 4) Fluid mainly controls the direction and stratification of reservoir reconstruction. In view of the complexity of carbonate diagenesis and pore evolution, the quantitative evaluation of carbonate diagenesis and pore evolution will be more perfect, and the diagenetic model will be more targeted and data-oriented under the constraints of multiple geological backgrounds in the future, combined with the techniques of cast thin section, cathode luminescence, scanning electron microscopy, isotope analysis, fluid inclusion, etc.

References

[1]  李阳, 吴胜和, 侯加根, 等. 油气藏开发地质研究进展与展望[J]. 石油勘探与开发, 2017, 44(4): 569-579.
[2]  李阳, 薛兆杰, 程喆, 等. 中国深层油气勘探开发进展与发展方向[J]. 中国石油勘探, 2020, 25(1): 45-57.
[3]  马永生, 黎茂稳, 蔡勋育, 等. 中国海相深层油气富集机理与勘探开发: 研究现状、关键技术瓶颈与基础科学问题[J]. 石油与天然气地质, 2020, 41(4): 655-672, 683.
[4]  马永生, 何登发, 蔡勋育, 等. 中国海相碳酸盐岩的分布及油气地质基础问题[J]. 岩石学报, 2017, 33(4): 1007-1020.
[5]  Choquette, P.W. and James, N.P. (1978) Diagenesis#12. Diagenesis in limestones-3. The Deep Burial Environment. Geoscience Canada, 3-35.
[6]  Czerniakowski, L.A., Lohmann, K.C. and Lee Wilson, J. (1984) Closed‐System Marine Burial Diagenesis: Isotopic Data from the Austin Chalk and Its Components. Sedimentology, 31, 863-877.
https://doi.org/10.1111/j.1365-3091.1984.tb00892.x
[7]  Fantle, M.S., Barnes, B.D. and Lau, K.V. (2020) The Role of Diagenesis in Shaping the Geochemistry of the Marine Carbonate Record. Annual Review of Earth and Planetary Sciences, 48, 549-583.
https://doi.org/10.1146/annurev-earth-073019-060021
[8]  Rashid, F., Glover, P.W.J., Lorinczi, P., et al. (2015) Porosity and Permeability of Tight Carbonate Reservoir Rocks in the North of Iraq. Journal of Petroleum Science and Engineering, 133, 147-161.
https://doi.org/10.1016/j.petrol.2015.05.009
[9]  Machel, H.G. (2005) Investigations of Burial Diagenesis in Carbonate Hydrocarbon Reservoir Rocks. Geoscience Canada, 103-128.
[10]  Scholle, P.A. and Halley, R.B. (1989) Burial Diagenesis: Out of Sight, Out of Mind! In: Schneidermann, N. and Harris, P.M., Eds., Carbonate Sedimentology and Petrology, American Geophysical Union, 135-160.
https://doi.org/10.1029/sc004p0135
[11]  Swart, P.K. (2015) The Geochemistry of Carbonate Diagenesis: The Past, Present and Future. Sedimentology, 62, 1233-1304.
https://doi.org/10.1111/sed.12205
[12]  Immenhauser, A. (2021) On the Delimitation of the Carbonate Burial Realm. The Depositional Record, 8, 524-574.
https://doi.org/10.1002/dep2.173
[13]  Einsele, G. (2000) Sedimentary Basins: Evolution, Facies, and Sediment Budget. Springer, 269.
[14]  Banner, J.L. and Hanson, G.N. (1990) Calculation of Simultaneous Isotopic and Trace Element Variations during Water-Rock Interaction with Applications to Carbonate Diagenesis. Geochimica et Cosmochimica Acta, 54, 3123-3137.
https://doi.org/10.1016/0016-7037(90)90128-8
[15]  Jonas, L., Müller, T., Dohmen, R., Baumgartner, L. and Putlitz, B. (2015) Transport-Controlled Hydrothermal Replacement of Calcite by MG-Carbonates. Geology, 43, 779-782.
https://doi.org/10.1130/g36934.1
[16]  Lange, S.M., Krause, S., Ritter, A., Fichtner, V., Immenhauser, A., Strauss, H., et al. (2018) Anaerobic Microbial Activity Affects Earliest Diagenetic Pathways of Bivalve Shells. Sedimentology, 65, 1390-1411.
https://doi.org/10.1111/sed.12428
[17]  Nairn, A. and Alsharhan, A. (1997) Sedimentary Basins and Petroleum Geology of the Middle East. Elsevier, 470.
[18]  Pederson, C., Mavromatis, V., Dietzel, M., Rollion-Bard, C., Nehrke, G., Jöns, N., et al. (2019) Diagenesis of Mollusc Aragonite and the Role of Fluid Reservoirs. Earth and Planetary Science Letters, 514, 130-142.
https://doi.org/10.1016/j.epsl.2019.02.038
[19]  Seewald, J.S. (2003) Organic-Inorganic Interactions in Petroleum-Producing Sedimentary Basins. Nature, 426, 327-333.
https://doi.org/10.1038/nature02132
[20]  李峰峰, 叶禹, 余义常, 等碳酸盐岩成岩作用研究进展[J]. 地质科技通报, 2023, 42(1): 170-190.
[21]  谢锦龙, 黄冲, 王晓星. 中国碳酸盐岩油气藏探明储量分布特征[J]. 海相油气地质, 2009, 14(2): 24-30
[22]  杜江民, 龙鹏宇, 杨鹏, 等. 中国陆相湖盆碳酸盐岩储集层特征及其成藏条件[J]. 地球科学进展, 2020, 35(1): 52-69.
[23]  王鸿祯. 中国古地理图集[M]. 北京: 中国地图出版社, 1985: 1-143.
[24]  冯增昭, 陈继新, 张吉森. 鄂尔多斯地区早古生代岩相古地理[M]. 北京: 地质出版社, 1991: 1-190.
[25]  马永生, 陈洪德, 王国力. 中国南方构造-层序岩相古地理图集(震旦纪-新近纪) [M]. 北京: 科学出版社, 2009: 1-301.
[26]  谢增业, 魏国齐, 李剑, 等. 中国海相碳酸盐岩大气田成藏特征与模式[J]. 石油学报, 2013, 34(1): 29-40.
[27]  赵越, 杨海军, 刘丹丹, 等. 塔中北斜坡致密碳酸盐岩盖层特征及其控油气作用[J]. 石油与天然气地质, 2011, 32(54): 890-896.
[28]  江怀友, 宋新民, 王元基, 等. 世界海相碳酸盐岩油气勘探开发现状与展望[J]. 海洋石油, 2008, 4(28): 6-13.
[29]  沈卫兵. 塔里木盆地塔中地区奥陶系碳酸盐岩油气藏成因机制与分布发育模式[D]: [博士学位论文]. 北京: 中国石油大学, 2016.
[30]  李璐萍, 梁金同, 刘四兵, 等. 川中地区寒武系洗象池组白云岩储层成岩作用及孔隙演化[J]. 岩性油气藏, 2022, 34(3): 39-48.
[31]  吴茂炳, 王毅, 郑孟林, 等. 塔中地区奥陶纪碳酸盐岩热液岩溶及其对储集层的影响[J]. 中国科学(B辑: 地球科学), 2007, 37(s1): 83-92.
[32]  宋金民, 罗平, 杨式升, 等. 塔里木盆地下寒武统微生物碳酸盐岩储集层特征[J]. 石油勘探与开发, 2014, 41(4): 404-413.
[33]  李朋威, 罗平, 宋金民, 等. 微生物碳酸盐岩储层特征与主控因素: 以塔里木盆地西北缘上震旦统-下寒武统为例[J]. 石油学报, 2015, 36(9): 1074-1089.
[34]  刘树根, 宋金民, 罗平, 等. 四川盆地深层微生物碳酸盐岩储层特征及其油气勘探前景[J]. 成都理工大学学报(自然科学版), 2016, 43(2): 131-152.
[35]  宋金民, 刘树根, 孙玮, 等. 兴凯地裂运动对四川盆地灯影组优质储层的控制作用[J]. 成都理工大学学报(自然科学版), 2013, 40(6): 658-670.
[36]  刘树根, 马永生, 孙玮, 等. 四川盆地威远气田和资阳含气区震旦系油气成藏差异性研究[J]. 地质学报, 2008, 28(3): 328-337.
[37]  费宝生, 汪建红. 中国海相油气田勘探实例之三渤海湾盆地任丘古潜山大油田的发现与勘探[J]. 海相油气地质, 2005, 10(3): 43-50.
[38]  周进高, 付金华, 于洲, 等. 鄂尔多斯盆地海相碳酸盐岩主要储层类型及其形成机制[J]. 天然气工业, 2020, 40(11): 20-30.
[39]  Choquette, P.W. and Pray, L.C. (1970) Geologic Nomenclature and Classification of Porosity in Sedimentary Carbonates. American Association of Petroleum Geologists Bulletin, 207-250.
[40]  沈卫兵, 庞雄奇, 张宝收, 等. 塔中地区碳酸盐岩与碎屑岩储层物性差异及主控因素[J]. 高校地质学报, 2015, 21(1): 138-146.
[41]  马永生, 蔡勋育, 赵培荣, 等. 深层超深层碳酸盐岩优质储层发育机理和“三元控储”模式——以四川普光气田为例[J]. 地质学报, 2010, 84(8): 1 087-1094.
[42]  马永生, 何治亮, 赵培荣, 等. 深层-超深层碳酸盐岩储层形成机理新进展[J]. 石油学报, 2019, 40(12): 1415-1425.
[43]  Lee, E.Y., Kominz, M., Reuning, L., Gallagher, S.J., Takayanagi, H., Ishiwa, T., et al. (2021) Quantitative Compaction Trends of Miocene to Holocene Carbonates off the West Coast of Australia. Australian Journal of Earth Sciences, 68, 1149-1161.
https://doi.org/10.1080/08120099.2021.1915867
[44]  Ehrenberg, S.N. and Nadeau, P.H. (2005) Sandstone Vs. Carbonate Petroleum Reservoirs: A Global Perspective on Porosity-Depth and Porosity-Permeability Relationships. AAPG Bulletin, 89, 435-445.
https://doi.org/10.1306/11230404071
[45]  Ehrenberg, S.N., Nadeau, P.H. and Steen, Ø. (2009) Petroleum Reservoir Porosity versus Depth: Influence of Geological Age. AAPG Bulletin, 93, 1281-1296.
https://doi.org/10.1306/06120908163
[46]  Ehrenberg, S.N., Walderhaug, O. and Bjørlykke, K. (2012) Carbonate Porosity Creation by Mesogenetic Dissolution: Reality or Illusion? AAPG Bulletin, 96, 217-233.
https://doi.org/10.1306/05031110187
[47]  Bassinot, F.C., Marsters, J.C., Mayer, L.A. and Wilkens, R.H. (1993) Variations of Porosity in Calcareous Sediments from the Ontong Java Plateau. Proceedings of the Ocean Drilling Program, Scientific Results, 130, 653-661.
https://doi.org/10.2973/odp.proc.sr.130.058.1993
[48]  Schmoker, J.W. (1984) Empirical Relation between Carbonate Porosity and Thermal Maturity: An Approach to Regional Porosity Prediction. AAPG Bulletin, 68, 1697-1703.
[49]  Schmoker, J.W. and Halley, R.B. (1982) Carbonate Porosity versus Depth: A Predictable Relation for South Florida. AAPG Bulletin, 66, 2561-2570.
[50]  Royden, L. and Keen, C.E. (1980) Rifting Process and Thermal Evolution of the Continental Margin of Eastern Canada Determined from Subsidence Curves. Earth and Planetary Science Letters, 51, 343-361.
https://doi.org/10.1016/0012-821x(80)90216-2
[51]  Sclater, J.G. and Christie, P.A.F. (1980) Continental Stretching: An Explanation of the Post‐Mid‐Cretaceous Subsidence of the Central North Sea Basin. Journal of Geophysical Research: Solid Earth, 85, 3711-3739.
https://doi.org/10.1029/jb085ib07p03711
[52]  Giles, M.R. (1997) Diagenesis: A Quantitative Perspective. Implications for Basin Modelling and Rock Property Prediction. Kluwer Academic Publishers.
[53]  汪文洋. 叠合盆地深层碳酸盐岩储层孔渗演化及油藏赋存下限[D]: [博士学位论文]. 北京: 中国石油大学, 2020.
[54]  沈安江, 胡安平, 张杰, 等. 微生物碳酸盐岩“三因素”控储地质认识和分布规律[J]. 石油与天然气地质, 2022, 43(3): 583-596.
[55]  何治亮, 张军涛, 丁茜, 等. 深层-超深层优质碳酸盐岩储层形成控制因素, 石油与天然气地质, 2017, 38(4): 633-644.
[56]  Mehrabi, H., Bahrehvar, M. and Rahimpour-Bonab, H. (2021) Porosity Evolution in Sequence Stratigraphic Framework: A Case from Cretaceous Carbonate Reservoir in the Persian Gulf, Southern Iran. Journal of Petroleum Science and Engineering, 196, Article ID: 107699.
https://doi.org/10.1016/j.petrol.2020.107699
[57]  鲁学云, 季建清, 王丽宁, 等. 气候-构造-剥蚀相互作用研究进展与展望[J]. 地球科学进展, 2023, 38(3): 270-285.
[58]  韩克猷, 孙玮. 四川盆地海相大气田和气田群成藏条件[J]. 石油与天然气地质, 2014, 35(1): 10-18.
[59]  高志前, 樊太亮, 杨伟红, 等. 塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化[J]. 吉林大学学报(地球科学版) , 2012, 42(3): 657-665.
[60]  蒋有录, 路允乾, 赵贤正, 等. 渤海湾盆地冀中坳陷潜山油气成藏模式及充注能力定量评价[J]. 地球科学, 2020, 45(1): 226-237.
[61]  吴兴宁, 李国军, 田继强, 等. 冀中坳陷碳酸盐岩潜山内幕储层特征及其形成主控因素[J]. 特种油气藏, 2011, 18(2): 22-25, 136.
[62]  张静, 张宝民. 鄂尔多斯盆地中元古界碳酸盐岩微观组构与微生物造岩作用[J]. 地质学报, 2022, 96(4): 1397-1411.
[63]  李映涛, 叶宁, 袁晓宇, 等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6): 934-944.
[64]  陈轩, 赵文智, 刘银河, 等. 川西南地区中二叠统热液白云岩特征及勘探思路[J]. 石油学报, 2013, 34(3): 460-466.
[65]  舒晓辉, 张军涛, 李国蓉, 等. 四川盆地北部栖霞组-茅口组热液白云岩特征与成因[J]. 石油与天然气地质, 2012, 33(3): 442-448.
[66]  邬光辉, 陈志勇, 郭群英. 碳酸盐岩变形带特征及其与油气关系: 以塔里木盆地下古生界为例[J]. 大地构造与成矿学, 2014, 38(3): 580-589.
[67]  倪新锋, 沈安江, 韦东晓, 等. 碳酸盐岩沉积学研究热点与进展: AAPG百年纪念暨2017年会及展览综述[J]. 天然气地球科学, 2018, 29(5): 729-742.
[68]  赵文智, 沈安江, 乔占峰, 等. 中国碳酸盐岩沉积储层理论进展与海相大油气田发现[J]. 中国石油勘探, 2022, 27(4): 1-15.
[69]  Holland, H.D. (2006) The Oxygenation of the Atmosphere and Oceans. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 903-915.
https://doi.org/10.1098/rstb.2006.1838
[70]  Eriksson, P.G., Catuneanu, O., Sarkar, S. and Tirsgaard, H. (2005) Patterns of Sedimentation in the Precambrian. Sedimentary Geology, 176, 17-42.
https://doi.org/10.1016/j.sedgeo.2005.01.003
[71]  Jamse, N.P. (1978) Introduction to Carbonate Facies Models. Geoscience Canada, 105-107.
[72]  Tucker, M.E. and Wright, V.P. (1990) Carbonate Sedimentology. Wiley.
https://doi.org/10.1002/9781444314175
[73]  Reading, H.G. and Levell, B.K. (1996) Controls on the Sedimentary Rock Record. In: Reading, H.G., Ed., Sedimentary Environments: Processes, Facies and Stratigraphy (3rd Edition), 5-52.
[74]  Schlager, W. (2000) Sedimentation Rates and Growth Potential of Tropical, Cool-Water and Mud-Mound Carbonate Systems. Geological Society, London, Special Publications, 178, 217-227.
https://doi.org/10.1144/gsl.sp.2000.178.01.14
[75]  Schlager, W. (2005) Carbonate Sedimentology and Sequence Stratigraphy. SEPM (Society for Sedimentary Geology), 200.
[76]  Reijmer, J.J.G. (2021) Marine Carbonate Factories: Review and Update. Sedimentology, 68, 1729-1796.
https://doi.org/10.1111/sed.12878
[77]  李峰峰, 郭睿, 余义常. 碳酸盐岩沉积相研究进展[J]. 科技导报, 2021, 39(8): 128-140.
[78]  Armstrong, A.K. (1974) Carboniferous Carbonate Depositional Models, Preliminary Lithofacies and Paleotectonics Maps. AAPG Bulletin, 58, 621-645.
[79]  Wiloson, J.L. (1975) Carbonate Facies in Geologic History. Springer Verlag, 348-374.
[80]  Read, J.F. (1985) Carbonate Platform Facies Models. AAPG Bulletin, 69, 1-21.
[81]  Eugster, H.P. and Hardie, L.A. (1975) Sedimentation in an Ancient Playa-Lake Complex: The Wilkins Peak Member of the Green River Formation of Wyoming. Geological Society of America Bulletin, 86, 319-334.
https://doi.org/10.1130/0016-7606(1975)86<319:siaapc>2.0.co;2
[82]  Wilkinson, B.H., Pope, B.N. and Owen, R.M. (1980) Nearshore Ooid Formation in a Modern Temperate Region Marl Lake. The Journal of Geology, 88, 697-704.
https://doi.org/10.1086/628555
[83]  贾承造, 张杰, 沈安江, 等. 非暖水碳酸盐岩: 沉积学进展与油气勘探新领域[J]. 石油学报, 2017, 38(3): 241-254.
[84]  Lees, A. and Buller, A.T. (1972) Modern Temperate-Water and Warm-Water Shelf Carbonate Sediments Contrasted. Marine Geology, 13, M67-M73.
https://doi.org/10.1016/0025-3227(72)90011-4
[85]  Sorby, H.C. (1879) The Structure and Origin of Limestones. Nature, 19, 424-425.
https://doi.org/10.1038/019424b0
https://www.nature.com/articles/019424b0
[86]  Cullis, C.G. (1904) The Mineralogical Changes Observed in the Cores of the Funafuti Borings. The Atoll of Funafuti Royal Society London, 392-420.
[87]  Fantle, M.S., Maher, K.M. and DePaolo, D.J. (2010) Isotopic Approaches for Quantifying the Rates of Marine Burial Diagenesis. Reviews of Geophysics, 48, RG3002.
https://doi.org/10.1029/2009rg000306
[88]  Morse, J.W., Arvidson, R.S. and Lüttge, A. (2007) Calcium Carbonate Formation and Dissolution. Chemical Reviews, 107, 342-381.
https://doi.org/10.1021/cr050358j
[89]  Mueller, M., Igbokwe, O.A., Walter, B., Pederson, C.L., Riechelmann, S., Richter, D.K., et al. (2019) Testing the Preservation Potential of Early Diagenetic Dolomites as Geochemical Archives. Sedimentology, 67, 849-881.
https://doi.org/10.1111/sed.12664
[90]  James, N.P. and Bone, Y. (2022) Sedimentology and Diagenesis of Pleistocene Calcareous, Non‐dolomitic, Interdune Sediments, Coorong Coastal Plain, South Australia. Sedimentology, 69, 2814-2843.
https://doi.org/10.1111/sed.13019
[91]  Zhu, D., Meng, Q., Jin, Z., Liu, Q. and Hu, W. (2015) Formation Mechanism of Deep Cambrian Dolomite Reservoirs in the Tarim Basin, Northwestern China. Marine and Petroleum Geology, 59, 232-244.
https://doi.org/10.1016/j.marpetgeo.2014.08.022
[92]  何治亮, 金晓辉, 沃玉进, 等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J]. 中国石油勘探, 2016, 21(1): 3-14.
[93]  朱光有, 杨海军, 朱永峰, 等. 塔里木盆地哈拉哈塘地区碳酸盐岩油气地质特征与富集成藏研究[J]. 岩石学报, 2011, 27(3): 827-844.
[94]  宋到福, 王铁冠, 李美俊. 塔中地区中深1和中深1C井盐下寒武系油气地球化学特征及其油气源判识[J]. 中国科学: 地球科学, 2016, 46(1): 107-117.
[95]  Swart, P.K. and Melim, L.A. (2000) The Origin of Dolomites in Tertiary Sediments from the Margin of Great Bahama Bank. Journal of Sedimentary Research, 70, 738-748.
https://doi.org/10.1306/2dc40934-0e47-11d7-8643000102c1865d
[96]  Croizé, D., Ehrenberg, S.N., Bjørlykke, K., Renard, F. and Jahren, J. (2010) Petrophysical Properties of Bioclastic Platform Carbonates: Implications for Porosity Controls during Burial. Marine and Petroleum Geology, 27, 1765-1774.
https://doi.org/10.1016/j.marpetgeo.2009.11.008
[97]  孟万斌, 肖春晖, 冯明石, 等. 碳酸盐岩成岩作用及其对储层的影响——以塔中顺南地区一间房组为例[J]. 岩性油气藏, 2016, 28(5): 27-32.
[98]  Moore, C.H. (2001) Carbonate Reservoirs-Porosity Evolution and Diagenesis in a Sequence Stratigraphic Framework. Elsevier, 460.
[99]  Wright, V.P. (1991) Paleokarst: Types, Recognition, Controls and Associations. In: Wright, V.P., Esteban, M. and Smart, P.L., Eds., Paleokarsts and Paleokarstic Reservoirs: P.R.I.S. Occasional Publication Series No. 2. Reading, University of Reading, 56-88.
[100]  Loucks, R.G. (1999) Paleocave Carbonate Reservoirs: Origins, Burial-Depth Modifications. Spatial Complexity, and Reservoir Implications. AAPG Bulletin, 83, 1795-1834.
[101]  Morse, J.W. and Mackenzie, F.T. (1990) Geochemistry of Sedimentary Carbonates. Elsevier, 696.
[102]  James, N.P. and Choquette, P.W. (1984) Diagenesis 9. Limestones—The Meteoric Diagenetic Environment. Geoscience Canada, 161-194.
[103]  Lohmann, K.C. (1988) Geochemical Patterns of Meteoric Diagenetic Systems and Their Application to Studies of Paleokarst. In: James, N.P. and Choquette, P.W., Eds., Paleokarst, Springer, 58-80.
https://doi.org/10.1007/978-1-4612-3748-8_3
[104]  Moore, C.H. (1989) Carbonate Diagenesis and Porosity. Elsevier, 337.
[105]  李忠. 盆地深层流体-岩石作用与油气形成研究前沿[J]. 矿物岩石地球化学通报, 2016, 35(5): 807-815.
[106]  李宇翔, 李国蓉, 顾炎午, 等. 塔中地区寒武系-下奥陶统白云岩层序不整合面控制的大气水溶蚀作用研究[J]. 岩性油气藏, 2009, 21(2): 45-48.
[107]  Ehrenberg, S.N., Walderhaug, O. and Bjørlykke, K. (2013) Carbonate Porosity Creation by Mesogenetic Dissolution: Reality or Illusion? AAPG Bulletin, 97, 347-349.
https://doi.org/10.1306/07111212089
[108]  王明筏, 陈超. 深层碳酸盐岩原位模拟实验及勘探启示: 以川东北地区二叠系为例[J]. 海相油气地质, 2018, 23(2): 10-16.
[109]  Jenden, P.D., Titley, P.A. and Worden, R.H. (2015) Enrichment of Nitrogen and 13C of Methane in Natural Gases from the Khuff Formation, Saudi Arabia, Caused by Thermochemical Sulfate Reduction. Organic Geochemistry, 82, 54-68.
https://doi.org/10.1016/j.orggeochem.2015.02.008

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133