|
改进Tilt-Euler反褶积法在重力数据反演中的适用性研究
|
Abstract:
为解决传统欧拉反褶积法中构造指数选择困难和反演解发散的问题,本文提出并应用了一种改进的倾斜角欧拉(iTilt-Euler)反褶积方法。通过与传统欧拉法和倾斜角欧拉(Tilt-Euler)法的对比分析,本文评估了改进方法在不同埋深、多个场源体以及加噪声情况下的适用性。在单个立方体模型试算中,改进Tilt-Euler法能够准确识别浅部埋深地质体的边界,随着埋深增加,边界识别略有偏差。在组合模型试算中,该方法能够有效识别多个场源体及其接触区域的边界。通过加入2%的高斯噪声进行的试算显示,改进Tilt-Euler法能够有效抑制噪声对反演结果的影响,提高了识别精度。结果表明,改进Tilt-Euler法在处理复杂地质体和噪声干扰时表现出较传统方法更强的稳定性和准确性,具有较好的实际应用前景。
To solve the problems of difficult index selection and divergent inversion solutions in traditional Euler deconvolution methods, this paper proposes and applies an improved tilt angle Euler (iTilt-Euler) deconvolution method. By comparing and analyzing with the traditional Euler method and Tilt-Euler method, this paper evaluates the applicability of the improved method under different burial depths, multiple field sources, and noisy conditions. In the trial calculation of a single cube model, the improved Tilt-Euler method can accurately identify the boundaries of shallow buried geological bodies. As the burial depth increases, there is a slight deviation in boundary identification. In the combination model calculation, this method can effectively identify the boundaries of multiple field source bodies and their contact areas. The trial calculation by adding 2% Gaussian noise shows that the improved Tilt-Euler method can effectively suppress the influence of noise on the inversion results and improve the recognition accuracy. The results show that the improved Tilt-Euler method exhibits stronger stability and accuracy than traditional methods when dealing with complex geological bodies and noise interference, and has good practical application prospects.
[1] | 吴亮, 王庆宾, 常岑, 等. 基于重力垂直梯度的欧拉反褶积改进措施[J]. 大地测量与地球动力学, 2016, 36(3): 193-197. |
[2] | Peters, L.J. (1949) The Direct Approach to Magnetic Interpretation and Its Practical Application. Geophysics, 14, 290-320. https://doi.org/10.1190/1.1437537 |
[3] | Thompson, D.T. (1982) EULDPH: A New Technique for Making Computer-Assisted Depth Estimates from Magnetic Data. Geophysics, 47, 31-37. https://doi.org/10.1190/1.1441278 |
[4] | Reid, A.B., Allsop, J.M., Granser, H., Millett, A.J. and Somerton, I.W. (1990) Magnetic Interpretation in Three Dimensions Using Euler Deconvolution. Geophysics, 55, 80-91. https://doi.org/10.1190/1.1442774 |
[5] | 姚长利, 管志宁, 吴其斌, 等. 欧拉反演方法分析及实用技术改进[J]. 物探与化探, 2004, 28(2): 150-155. |
[6] | 曹书锦, 朱自强, 鲁光银. 基于自适应模糊聚类分析的重力张量欧拉反褶积解[J]. 中南大学学报(自然科学版), 2012, 43(3): 1033-1039. |
[7] | 马国庆, 杜晓娟, 李丽丽, 等. 梯度反褶积法及其在矿产勘探中的应用[J]. 吉林大学学报(地球科学版), 2013, 43(1): 259-266. |
[8] | 周文月. 重磁张量场源空间分布特征反演技术研究[D]: [博士学位论文]. 长春: 吉林大学, 2019. |
[9] | 马国庆, 杜晓娟, 李丽丽, 等. 利用倾斜角总水平导数和欧拉反褶积法研究四川盆地线性构造[J]. 地球物理学进展, 2011, 26(3): 916-921. |
[10] | 周文月, 马国庆, 侯振隆, 等. 重力全张量数据联合欧拉反褶积法研究及应用[J]. 地球物理学报, 2017, 60(12): 4855-4865. |
[11] | 王明, 骆遥, 罗锋, 等. 欧拉反褶积在重磁位场中应用与发展[J]. 物探与化探, 2012, 36(5): 834-841. |
[12] | 林万里, 方根显, 戴清峰, 等. 基于重磁欧拉3D反褶积的相山基底起伏研究[J]. 物探化探计算技术, 2015, 37(2): 158-163. |
[13] | 孙昂, 郭华, 田明阳, 等. 基于欧拉反褶积方法的航磁三分量应用研究[J]. 地球物理学报, 2017, 60(11): 15. |
[14] | 陈青, 袁炳强, 董云鹏, 等. 断裂识别新方法及其在肯尼亚Tana凹陷中的应用[J]. 西北大学学报(自然科学版), 2013, 43(4): 599-605. |
[15] | 李银飞. 利用欧拉反褶积划分虎林盆地构造单元[D]: [硕士学位论文]. 长春: 吉林大学, 2019. |
[16] | Miller, H.G. and Singh, V. (1994) Potential Field Tilt—A New Concept for Location of Potential Field Sources. Journal of Applied Geophysics, 32, 213-217. https://doi.org/10.1016/0926-9851(94)90022-1 |
[17] | Salem, A., Williams, S., Fairhead, D., Smith, R. and Ravat, D. (2008) Interpretation of Magnetic Data Using Tilt-Angle Derivatives. Geophysics, 73, L1-L10. https://doi.org/10.1190/1.2799992 |
[18] | 王万银, 邱之云, 杨永, 等. 位场边缘识别方法研究进展[J]. 地球物理学进展, 2010, 25(1): 196-210. |
[19] | 刘鹏飞, 刘天佑, 杨宇山, 等. Tilt梯度算法的改进与应用: 以江苏韦岗铁矿为例[J]. 地球科学——中国地质大学学报, 2015, 40(12): 2091-2102. |
[20] | Huang, L., Zhang, H., Sekelani, S. and Wu, Z. (2019) An Improved Tilt-Euler Deconvolution and Its Application on a Fe-Polymetallic Deposit. Ore Geology Reviews, 114, Article 103114. https://doi.org/10.1016/j.oregeorev.2019.103114 |