|
Material Sciences 2024
g-C3N4纳米管/NiS2复合材料的制备及其光催化性能
|
Abstract:
首先以三聚氰胺为原料,通过水热结合煅烧的方法制备了g-C3N4纳米管(tg-C3N4)。然后以硝酸镍和硫代乙酰胺为前驱体,通过水热的方法制备出tg-C3N4/NiS2复合材料。采用XRD、FTIR、TEM、UV-Vis、PL和电化学测试方法对其进行了表征。结果表明,与tg-C3N4相比,tg-C3N4/NiS2复合材料具有更强的光吸收性能和光生电子–空穴分离效率。通过可见光下降解罗丹明B对其催化性能进行评价。结果发现:当NiS2质量分数为3%时,复合材料呈现出最佳的光催化效率,其对罗丹明B降解速率为0.0635 min?1,是tg-C3N4 (0.0145 min?1)的4.3倍。通过活性物种捕获实验可知,
和·OH在光催化降解过程中起着主要作用。
Firstly, g-C3N4 nanotubes (tg-C3N4) were prepared by hydrothermal combined with thermal polyme- rization using melamine as raw material. Then tg-C3N4/NiS2 composites were prepared by hydrothermal method using nickel nitrate and thioacetamide as precursors. The catalysts were characterized by XRD, FTIR, TEM, UV-Vis, PL and electrochemical tests. The results show that the tg-C3N4/NiS2 composites have enhanced light absorption properties and photogenerated electron-hole separation efficiency compared with tg-C3N4. The catalytic performance was evaluated by visible light degradation of Rhodamine B. It was found that the composite exhibited the best photocatalytic efficiency when the NiS2 mass fraction was 3%, and its degradation rate was 0.0635 min?1, which was 4.3 times as that of tg-C3N4 (0.0145 min?1). According to the active species trapping experiment,
and ·OH played the main roles in the photocatalytic degradation process.
[1] | 尹竞, 廖高祖, 朱冬韵, 等. g-C3N4/石墨烯复合材料的制备及光催化活性的研究[J]. 中国环境科学, 2016, 36(3): 735-740. |
[2] | 楚增勇, 原博, 颜廷楠. g-C3N4光催化性能的研究进展[J]. 无机材料学报, 2014, 29(8): 785-794. |
[3] | Fu, J., Xu, Q., Low, J., Jiang, C. and Yu, J. (2019) Ultrathin 2D/2D WO3/g-C3N4 Step-Scheme H2-Production Photocatalyst. Applied Catalysis B: Environmental, 243, 556-565. https://doi.org/10.1016/j.apcatb.2018.11.011 |
[4] | 廖国东. g-C3N4掺杂改性制备及其光催化产氢性能研究[D]: [博士学位论文]. 武汉: 武汉工程大学, 2022. |
[5] | 王娟, 王国宏, 程蓓, 等. 光降解刚果红的S型硫掺杂g-C3N4/TiO2异质结光催化剂(英文) [J]. 催化学报, 2021, 42(1): 56-68. |
[6] | Cui, L., Song, J., McGuire, A.F., Kang, S., Fang, X., Wang, J., et al. (2018) Constructing Highly Uniform Onion-Ring-Like Graphitic Carbon Nitride for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. ACS Nano, 12, 5551-5558. https://doi.org/10.1021/acsnano.8b01271 |
[7] | Jin, Z., Zhang, Q., Yuan, S. and Ohno, T. (2015) Synthesis High Specific Surface Area Nanotube g-C3N4 with Two-Step Condensation Treatment of Melamine to Enhance Photocatalysis Properties. RSC Advances, 5, 4026-4029. https://doi.org/10.1039/c4ra13355b |
[8] | Shiraishi, Y., Kofuji, Y., Kanazawa, S., Sakamoto, H., Ichikawa, S., Tanaka, S., et al. (2014) Platinum Nanoparticles Strongly Associated with Graphitic Carbon Nitride as Efficient Co-Catalysts for Photocatalytic Hydrogen Evolution under Visible Light. Chemical Communications, 50, 15255-15258. https://doi.org/10.1039/c4cc06960a |
[9] | Yan, Q., Huang, G., Li, D., Zhang, M., Pan, A. and Huang, W. (2018) Facile Synthesis and Superior Photocatalytic and Electrocatalytic Performances of Porous B-Doped g-C3N4 Nanosheets. Journal of Materials Science & Technology, 34, 2515-2520. https://doi.org/10.1016/j.jmst.2017.06.018 |
[10] | 吴思展. 类石墨氮化碳(g-C3N4)的合成、加工处理、修饰及其光催化性能的研究[D]: [博士学位论文]. 广州: 华南理工大学, 2014. |
[11] | 王敏, 程晶晶, 王雪飞, 等. NiS助催化剂的硫调控光沉积合成及其增强g-C3N4的光催化产氢性能[J]. 催化学报, 2021, 42(1): 37-45. |
[12] | 宋嘉和. g-C3N4基复合材料的制备及其光催化降解四环素的研究[D]: [硕士学位论文]. 沈阳: 沈阳师范大学, 2023. |
[13] | 种奔, 陈雷, 韩德志, 等. CdS修饰的一维g-C3N4多孔纳米管在光催化降解污染物和产氢中的应用[J]. 催化学报, 2019, 40(6): 959-968. |
[14] | Vinoth, S., Mary Rajaitha, P. and Pandikumar, A. (2020) In-Situ Pyrolytic Processed Zinc Stannate Incorporated Graphitic Carbon Nitride Nanocomposite for Selective and Sensitive Electrochemical Determination of Nitrobenzene. Composites Science and Technology, 195, Article ID: 108192. https://doi.org/10.1016/j.compscitech.2020.108192 |
[15] | Vinoth, S., Rajaitha, P.M., Venkadesh, A., Shalini Devi, K.S., Radhakrishnan, S. and Pandikumar, A. (2020) Nickel Sulfide-Incorporated Sulfur-Doped Graphitic Carbon Nitride Nanohybrid Interface for Non-Enzymatic Electrochemical Sensing of Glucose. Nanoscale Advances, 2, 4242-4250. https://doi.org/10.1039/d0na00172d |