|
基于机器学习的焦作丹河电厂三维地质建模
|
Abstract:
在岩体工程评估、地基基础设计及不良地质条件处理中,快速且高效的三维地质建模方法发挥着至关重要的作用。传统地质建模技术往往面临操作难度大、流程繁琐及建模精度低等问题。基于机器学习的方法,将传统的三维地质建模问题转化为对地下空间栅格进行地层属性分类的问题。以焦作丹河电厂异地扩建项目为例,通过比较决策树、随机森林、支持向量机与XGBoost这四种分类算法的效果发现,在无需额外钻孔数据或虚拟钻孔支持的情况下,XGBoost表现出更高的准确率和更优的建模性能。
In the evaluation of rock engineering, foundation design, and the treatment of adverse geological conditions, rapid and efficient three-dimensional (3D) geological modeling methods play a crucial role. Traditional geological modeling techniques often encounter issues such as high operational difficulty, cumbersome procedures, and low modeling accuracy. By employing machine learning methods, the conventional problem of 3D geological modeling is transformed into one of classifying stratigraphic properties within a subsurface grid. Using the expansion project of the Danhe Power Plant in Jiaozuo as a case study, a comparison of the performance of four classification algorithms—decision trees, random forests, support vector machines, and XGBoost—revealed that XGBoost demonstrated higher accuracy and superior modeling performance without the need for additional borehole data or virtual boreholes.
[1] | 张洋洋, 周万蓬, 吴志春, 等. 三维地质建模技术发展现状及建模实例[J]. 东华理工大学学报(社会科学版), 2013, 32(3): 403-409. |
[2] | 吴观茂, 黄明, 李刚, 等. 三维地质模型与可视化研究的现状分析[J]. 测绘工程, 2008, 17(2): 1-5. |
[3] | 郭福钟, 郑博文, 祁生文, 等. 三维地质建模技术与方法综述[J]. 工程地质学报, 2024, 32(3): 1143-1153. |
[4] | Wu, L. (2004) Topological Relations Embodied in a Generalized Tri-Prism (GTP) Model for a 3D Geoscience Modeling System. Computers & Geosciences, 30, 405-418. https://doi.org/10.1016/j.cageo.2003.06.005 |
[5] | 李章林, 吴冲龙, 张夏林, 等. 地质科学大数据背景下的矿体动态建模方法探讨[J]. 地质科技通报, 2020, 39(4): 59-68. |
[6] | 熊玖琦, 刘星. 基于支持向量机的顾北煤矿北一矿区三维地质模型构建[J]. 科学技术与工程, 2022, 22(19): 8194-8199. |
[7] | 赵勇, 许国, 卢鹏, 等. 基于GemPy的隐式三维地质建模方法[J]. 人民长江, 2023, 54(10): 98-104. |
[8] | 郭甲腾, 吴立新, 周文辉. 基于径向基函数曲面的矿体隐式自动三维建模方法[J]. 煤炭学报, 2016, 41(8): 2130-2135. |
[9] | 周永章, 左仁广, 刘刚, 等. 数学地球科学跨越发展的十年: 大数据、人工智能算法正在改变地质学[J]. 矿物岩石地球化学通报, 2021, 40(3): 556-573. |
[10] | 李苍柏, 肖克炎, 李楠, 等. 支持向量机、随机森林和人工神经网络机器学习算法在地球化学异常信息提取中的对比研究[J]. 地球学报, 2020, 41(2): 309-319. |
[11] | Shi, C. and Wang, Y. (2022) Machine Learning of Three-Dimensional Subsurface Geological Model for a Reclamation Site in Hong Kong. Bulletin of Engineering Geology and the Environment, 81, Article No. 504. https://doi.org/10.1007/s10064-022-03009-y |