|
锆石在探究岩浆形成与演化中的应用
|
Abstract:
锆石作为一种稳定的副矿物,在地球上各种岩浆岩、变质岩与沉积岩中均有出现。由于其耐高温和抗腐蚀,富含U等元素,并且具有较高的封闭温度,锆石一直是U-Pb同位素测年的理想矿物。近年来随着原位微区测试技术的发展,对锆石的应用研究已经从传统的U-Pb同位素测年逐渐转向微区同位素和微量元素示踪领域。本文主要是在收集与整理国内外相关研究成果的基础上,系统地归纳总结锆石在确定岩浆结晶年龄、识别岩浆源区组成、反演岩浆物理化学条件、识别岩浆结晶分异过程和判别岩浆形成的板块构造环境等方面的应用,为未来运用锆石深入探究岩浆形成与演化过程提供重要参考。
As a stable submineral, zircon occurs in all kinds of magmatic rocks, metamorphic rocks and sedimentary rocks on Earth. Due to its high temperature and corrosion resistance, high concentration of elements such as U, and high sealing temperature, zircon has been an ideal mineral for U-Pb isotope dating. In recent years, with the development of in situ microzone measurement technology, the applied research of zircon has gradually shifted from the traditional U-Pb isotope dating to the field of microzone isotope and trace element tracing. Based on the collection and collation of relevant research results at home and abroad, this paper systematically summarizes the application of zircon in determining the crystallization age of magma, identifying the composition of magma source region, inverting the physical and chemical conditions of magma, identifying the crystallization differentiation process of magma, and discriminating the plate tectonic environment of magma formation. It provides important reference for further study of magma formation and evolution by zircon in the future.
[1] | 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16): 1589-1604. |
[2] | 高少华, 赵红格, 鱼磊, 等. 锆石U-Pb同位素定年的原理、方法及应用[J]. 江西科学, 2013, 31(3): 363-368, 408. |
[3] | 谭靖, 郭冬发, 张彦辉. 激光烧蚀光谱-电感耦合等离子体质谱联用技术应用进展[J]. 中国无机分析化学, 2011, 1(3): 16-22. |
[4] | 舒磊, 张晨西, 李增胜, 等. LA-MC-ICP-MS锆石U-Pb定年方法探讨[J]. 山东国土资源, 2022, 38(1): 31-36. |
[5] | 储著银, 许俊杰, 凌潇潇, 等. 实时在线氧校正205Pb-233U-236U稀释剂单颗粒锆石ID-TIMS U-Pb高精度年龄测定方法[J]. 岩石学报, 2022, 38(12): 3695-3702. |
[6] | 吴福元, 李献华, 郑永飞, 等. Lu-Hf同位素体系及其岩石学应用[J]. 岩石学报, 2007, 23(2): 185-220. |
[7] | Li, Z., Zhang, S., Zheng, Y. and Sun, G. (2024) Homogenization of Hf Nd Isotopes Induced by Hydrothermal Fluids during the Differentiation of Granitic Magmas into Pegmatites. Chemical Geology, 670, Article ID: 122455. https://doi.org/10.1016/j.chemgeo.2024.122455 |
[8] | Wang, Y., Gao, P., Sun, G., Mayne, M.J., Zhang, J., Yin, C., et al. (2024) Zircon Hf Isotope Behavior during the Magmatic-Hydrothermal Processes: A Case Study from the Yashan Pluton, South China. Lithos, 470, Article ID: 107519. https://doi.org/10.1016/j.lithos.2024.107519 |
[9] | 龙欣雨, 唐杰, 许文良. 花岗质岩浆作用及后期演化过程: 来自矿物原位微区成分与同位素组成的制约[J]. 岩石学报, 2024, 40(3): 785-810. |
[10] | 郑光高, 崔建军, 刘晓春, 等. 汉南杂岩余家山铜镍矿成矿时代与岩浆源区性质研究——来自锆石U-Pb测年和Lu-Hf同位素的制约[J]. 地质力学学报, 2017, 23(5): 661-672. |
[11] | 高晓英, 郑永飞. 金红石Zr和锆石Ti含量地质温度计[J]. 岩石学报, 2011, 27(2): 417-432. |
[12] | 蔺梦, 张贵宾, 宋述光, 等. 低温高压榴辉岩锆石Ti温度计的有效性[J]. 地球科学, 2019, 44(12): 4034-4041. |
[13] | Crisp, L.J., Berry, A.J., Burnham, A.D., Miller, L.A. and Newville, M. (2023) The Ti-In-Zircon Thermometer Revised: The Effect of Pressure on the Ti Site in Zircon. Geochimica et Cosmochimica Acta, 360, 241-258. https://doi.org/10.1016/j.gca.2023.04.031 |
[14] | 肖路毅, 杨晓志. 锆石Ce氧逸度计和早期地球的氧化还原状态[J]. 高校地质学报, 2022, 28(4): 484-492. |
[15] | 张聚全, 李胜荣, 卢静. 中酸性侵入岩的氧逸度计算[J]. 矿物学报, 2018, 38(1): 1-14. |
[16] | 降珂楠, 骆金诚, 钟福军, 等. 锆石氧逸度对相山地区火山岩型铀矿床成矿母岩判别的指示意义[J]. 地质学报, 2024, 98(1): 181-205. |
[17] | 张京渤, 安芳. 斑岩型铜矿床成矿斑岩岩浆氧化状态研究方法综述[J]. 矿床地质, 2018, 37(5): 1052-1064. |
[18] | 贺振宇, 颜丽丽. 锆石微量元素地球化学对硅质火山岩浆系统的制约[J]. 岩石矿物学杂志, 2021, 40(5): 939-951. |
[19] | Zieman, L.J., Ibañez-Mejia, M., Tissot, F.L.H., Tompkins, H.G.D., Pardo, N. and Bloch, E.M. (2024) Zirconium Stable Isotope Fractionation during Intra-Crustal Magmatic Differentiation in an Active Continental Arc. Geochimica et Cosmochimica Acta, 365, 53-69. https://doi.org/10.1016/j.gca.2023.11.023 |
[20] | Zhu, Z., Zhang, W., Wang, J., Wang, Z., Guo, J., Elis Hoffmann, J., et al. (2023) Magmatic Crystallization Drives Zircon Zr Isotopic Variations in a Large Granite Batholith. Geochimica et Cosmochimica Acta, 342, 15-30. https://doi.org/10.1016/j.gca.2022.12.003 |
[21] | 朱二林, 夏琼霞, 李赵雅, 等. 地壳深熔过程中锆石的Zr同位素分馏[J]. 中国科学: 地球科学, 2024, 54(8): 2534-2545. |
[22] | 刘建辉, 刘敦一, 张玉海, 等. 使用SHRIMP测定锆石铀-铅年龄的选点技巧[J]. 岩矿测试, 2011, 30(03): 265-268. |
[23] | 严桃桃, 龚庆杰. 风化过程的岩性地球化学基因[D]: [博士学位论文]. 北京: 中国地质大学, 2018. |
[24] | Zhu, Z., Campbell, I.H., Allen, C.M. and Burnham, A.D. (2020) S-Type Granites: Their Origin and Distribution through Time as Determined from Detrital Zircons. Earth and Planetary Science Letters, 536, Article ID: 116140. https://doi.org/10.1016/j.epsl.2020.116140 |
[25] | 赵振华. 矿物微量元素组成用于火成岩构造背景判别[J]. 大地构造与成矿学, 2016, 40(5): 986-995. |