全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

我国典型拜耳法高铁赤泥的工艺矿物学研究
Study on Process Mineralogy of Typical High-Iron Red Mud Derived from Bayer Process in China

DOI: 10.12677/meng.2024.114024, PP. 197-209

Keywords: 拜耳法,高铁赤泥,工艺矿物学,赤铁矿,铝针铁矿
Bayer Process
, High-Iron Red Mud, Process Mineralogy, Hematite, Alumogeothite

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用化学分析、X射线衍射(XRD)、矿物特征自动定量分析系统(AMICS)、扫描电镜(SEM)、X射线能谱仪(EDS)等分析手段,对我国典型拜耳法高铁赤泥的化学组成、矿物组成、矿物嵌布及矿物解离度进行分析。结果表明:低温拜耳法高铁赤泥中Fe2O3和Al2O3质量分数分别为58.25%和18.87%;主要物相为铝针铁矿和赤铁矿,其质量分数分别为65.40%和13.05%;赤铁矿的平均粒径为15.54 μm,其解离度 ≥ 80%的质量百分数为10.61%。高温拜耳法高铁赤泥中Fe2O3和Al2O3质量分数分别为37.05%和21.36%;主要物相为赤铁矿、钙铁石榴石和钙霞石,其质量分数分别为36.48%、22.83%和13.88%;赤铁矿的平均粒径为18.66 μm,其解离度 ≥ 80%的质量百分数为30.57%。该研究为拜耳法高铁赤泥中有价组分提取新技术的开发提供指导。
The chemical composition, mineral composition, mineral distribution, and mineral dissociation degree of typical high-iron red mud derived from Bayer process in China were systematically studies with the analysis methods of chemical analysis, X-ray diffraction, advanced mineral identification and characterisation system, scanning electron microscope, and energy dispersive spectrometer. The results show that the main minerals in low-temperature red mud, in which there are 58.25% of Fe2O3 and 18.87% of Al2O3, are alumogeothite and hematite with mass ratio of 65.40% and 13.05%, respectively. The mean particle size of hematite is 15.54 μm, and about 10.61% of hematite exists with dissociation degree of ≥80%. The content of Fe2O3 and Al2O3 in high-temperature red mud are 37.05% and 21.36%. The main minerals are hematite, andradite and cancrinite, with mass ratio of 36.48%, 22.83% and 13.88%, respectively. The mean particle size of hematite is 18.66 μm, and about 30.57% of hematite exists with dissociation degree of ≥80%. The results may provide a reference for developing a new technology for extracting valuable components from high-iron red mud derived from Bayer process.

References

[1]  USGS (United States Geological Survey) (n.d.) Statistics and Information on the Worldwide Supply of, Demand for, and Flow of the Mineral Commodities Bauxite and Alumina. United States Government Printing Office, Washington.
https://minerals.usgs.gov/minerals/pubs/commodity/bauxite
[2]  刘玉林, 程宏伟. 我国铝土矿资源特征及综合利用技术研究进展[J]. 矿产保护与利用, 2022, 42(6): 106-114.
[3]  张佰永, 黄飞. 世界铝土矿储量之王-几内亚世界铝工业原料国(一) [J]. 轻金属, 2024(2): 1-6.
[4]  Smith, P. (2009) The Processing of High Silica Bauxites—Review of Existing and Potential Processes. Hydrometallurgy, 98, 162-176.
https://doi.org/10.1016/j.hydromet.2009.04.015
[5]  胡志鹏, 张盈, 郑诗礼, 等. 还原拜耳法高铁赤泥碱水热-络合溶解提质工艺研究[J]. 过程工程学报, 2024, 24(10): 1208-1221.
[6]  Kumar, S., Kumar, R. and Bandopadhyay, A. (2006) Innovative Methodologies for the Utilisation of Wastes from Metallurgical and Allied Industries. Resources, Conservation and Recycling, 48, 301-314.
https://doi.org/10.1016/j.resconrec.2006.03.003
[7]  黄诗蔚, 张子颖, 钟小琳, 等. 酸浸米糠协同脱硫石膏驱动赤泥成土[J]. 中国有色金属学报, 2024, 34(5): 1712-1726.
[8]  Kumar, A. and Kumar, S. (2013) Development of Paving Blocks from Synergistic Use of Red Mud and Fly Ash Using Geopolymerization. Construction and Building Materials, 38, 865-871.
https://doi.org/10.1016/j.conbuildmat.2012.09.013
[9]  Hua, Y., Heal, K.V. and Friesl-Hanl, W. (2017) The Use of Red Mud as an Immobiliser for Metal/Metalloid-Contaminated Soil: A Review. Journal of Hazardous Materials, 325, 17-30.
https://doi.org/10.1016/j.jhazmat.2016.11.073
[10]  Guo, Y., Zhang, Y., Huang, H., Meng, K., Hu, K., Hu, P., et al. (2014) Novel Glass Ceramic Foams Materials Based on Red Mud. Ceramics International, 40, 6677-6683.
https://doi.org/10.1016/j.ceramint.2013.11.128
[11]  Xue, S., Kong, X., Zhu, F., Hartley, W., Li, X. and Li, Y. (2016) Proposal for Management and Alkalinity Transformation of Bauxite Residue in China. Environmental Science and Pollution Research, 23, 12822-12834.
https://doi.org/10.1007/s11356-016-6478-7
[12]  柳佳建, 陈伟, 周康根, 等. 赤泥中铁的回收利用研究进展[J]. 矿产保护与利用, 2021, 41(3): 70-75.
[13]  Liu, Y. and Naidu, R. (2014) Hidden Values in Bauxite Residue (Red Mud): Recovery of Metals. Waste Management, 34, 2662-2673.
https://doi.org/10.1016/j.wasman.2014.09.003
[14]  潘晓林, 吕中阳, 吴鸿飞, 等. 赤泥回收铁铝资源技术研究现状及展望[J].中国有色金属学报, 2023, 33(11): 3879-3899.
[15]  李朝祥. 从平果铝赤泥中回收铁半工业性试验取得成功[J]. 矿冶工程, 2000(1): 58.
[16]  张谌虎, 石开仪, 陈鹏, 等. 回收某赤泥中铁的选矿试验研究[J]. 矿业研究与开发, 2020, 40(7): 156-159.
[17]  Rai, S., Nimje, M.T., Chaddha, M.J., Modak, S., Rao, K.R. and Agnihotri, A. (2019) Recovery of Iron from Bauxite Residue Using Advanced Separation Techniques. Minerals Engineering, 134, 222-231.
https://doi.org/10.1016/j.mineng.2019.02.018
[18]  Zhou, X., Liu, G., Qi, T., Zhao, J., Peng, Z., Wang, Y., et al. (2023) Increasing Iron Recovery from High-Iron Red Mud by Surface Magnetization. Journal of Sustainable Metallurgy, 9, 795-805.
https://doi.org/10.1007/s40831-023-00686-1
[19]  罗振勇, 史英杰, 倪阳. 赤泥磁化焙烧湿法选铁技术研究及工程应用经济性分析[J]. 轻金属, 2023(8): 14-16, 20.
[20]  Yuan, S., Liu, X., Gao, P. and Han, Y. (2020) A Semi-Industrial Experiment of Suspension Magnetization Roasting Technology for Separation of Iron Minerals from Red Mud. Journal of Hazardous Materials, 394, Article 122579.
https://doi.org/10.1016/j.jhazmat.2020.122579
[21]  Sadangi, J.K., Das, S.P., Tripathy, A. and Biswal, S.K. (2018) Investigation into Recovery of Iron Values from Red Mud Dumps. Separation Science and Technology, 53, 2186-2191.
https://doi.org/10.1080/01496395.2018.1446984
[22]  Habibi, H., Piruzian, D., Shakibania, S., Pourkarimi, Z. and Mokmeli, M. (2021) The Effect of Carbothermal Reduction on the Physical and Chemical Separation of the Red Mud Components. Minerals Engineering, 173, Article 107216.
https://doi.org/10.1016/j.mineng.2021.107216
[23]  Li, X., Xiao, W., Liu, W., Liu, G., Peng, Z., Zhou, Q., et al. (2009) Recovery of Alumina and Ferric Oxide from Bayer Red Mud Rich in Iron by Reduction Sintering. Transactions of Nonferrous Metals Society of China, 19, 1342-1347.
https://doi.org/10.1016/s1003-6326(08)60447-1
[24]  Wei, D., Jun-Hui, X., Yang, P., Si-Yue, S. and Tao, C. (2019) Iron Extraction from Red Mud Using Roasting with Sodium Salt. Mineral Processing and Extractive Metallurgy Review, 42, 153-161.
https://doi.org/10.1080/08827508.2019.1706049
[25]  Archambo, M.S. and Kawatra, S.K. (2020) Utilization of Bauxite Residue: Recovering Iron Values Using the Iron Nugget Process. Mineral Processing and Extractive Metallurgy Review, 42, 222-230.
https://doi.org/10.1080/08827508.2020.1720982
[26]  Radomirovic, T., Smith, P., Southam, D., Tashi, S. and Jones, F. (2013) Crystallization of Sodalite Particles under Bayer-Type Conditions. Hydrometallurgy, 137, 84-91.
https://doi.org/10.1016/j.hydromet.2013.05.006
[27]  Chaliha, D., Gomes, J.F., Smith, P. and Jones, F. (2022) In situ Atomic Force Microscopy (AFM) Investigation of Kaolinite Dissolution in Highly Caustic Environments. CrystEngComm, 24, 2042-2049.
https://doi.org/10.1039/d1ce01572a
[28]  王子如, 曹泽平, 汪佳瑶, 等. 石英及方石英的碱浸动力学研究[J]. 矿产保护与利用, 2022, 42(5): 88-94.
[29]  Li, X., Fu, W., Zhou, Q., Liu, G. and Peng, Z. (2010) Reaction Behavior and Mechanism of Anatase in Digestion Process of Diasporic Bauxite. Transactions of Nonferrous Metals Society of China, 20, 142-146.
https://doi.org/10.1016/s1003-6326(09)60111-4
[30]  Reyes, C.A.R., Williams, C. and Alarcón, O.M.C. (2013) Nucleation and Growth Process of Sodalite and Cancrinite from Kaolinite-Rich Clay under Low-Temperature Hydrothermal Conditions. Materials Research, 16, 424-438.
https://doi.org/10.1590/s1516-14392013005000010
[31]  Dickson, J.O., Harsh, J.B., Flury, M. and Pierce, E.M. (2015) Immobilization and Exchange of Perrhenate in Sodalite and Cancrinite. Microporous and Mesoporous Materials, 214, 115-120.
https://doi.org/10.1016/j.micromeso.2015.05.011
[32]  Xu, B., Smith, P., Wingate, C. and De Silva, L. (2010) The Effect of Calcium and Temperature on the Transformation of Sodalite to Cancrinite in Bayer Digestion. Hydrometallurgy, 105, 75-81.
https://doi.org/10.1016/j.hydromet.2010.07.010
[33]  Pan, X., Wu, H., Yu, H. and Bi, S. (2020) Precipitation of Desilication Products in Cao-Na2O-Al2O3-SiO2-H2O System Based on the Bayer Process. Hydrometallurgy, 197, Article 105469.
https://doi.org/10.1016/j.hydromet.2020.105469
[34]  Zöldi, J., Solymar, K., Zambo, J., et al. (1988) Iron Hydrogarnets in the Bayer Process. Magyar Aluminium, 25, 316-327.
[35]  Liu, Z. and Li, H. (2015) Metallurgical Process for Valuable Elements Recovery from Red Mud—A Review. Hydrometallurgy, 155, 29-43.
https://doi.org/10.1016/j.hydromet.2015.03.018
[36]  Shao, J., Li, L., Wu, Y., Wang, Y. and Liu, F. (2023) Recovery of Alumina and Alkali from Red Mud Using NaFeO2 (NF) as an Additive in the Hydrothermal Process. JOM, 76, 1420-1428.
https://doi.org/10.1007/s11837-023-06286-4
[37]  Zhang, R., Zheng, S., Ma, S. and Zhang, Y. (2011) Recovery of Alumina and Alkali in Bayer Red Mud by the Formation of Andradite-Grossular Hydrogarnet in Hydrothermal Process. Journal of Hazardous Materials, 189, 827-835.
https://doi.org/10.1016/j.jhazmat.2011.03.004
[38]  Li, X., Wang, Y., Zhou, Q., Qi, T., Liu, G., Peng, Z., et al. (2018) Reaction Behaviors of Iron and Hematite in Sodium Aluminate Solution at Elevated Temperature. Hydrometallurgy, 175, 257-265.
https://doi.org/10.1016/j.hydromet.2017.12.004

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133