|
海洋碳汇价值实现的标准、方法学与环境监管框架思考
|
Abstract:
海洋被认为将在应对气候变化中发挥重要作用,通过生态修复、大型藻类养殖、海水碱化等人为手段提高海洋系统的固碳、储碳能力,可以有效减缓全球变暖。然而,海洋碳汇的价值实现仍面临效益评估不明确、环境影响如何纳入监管等诸多挑战。核算增汇潜力和控制成本,构建标准和方法学体系,并完善环境影响的监管框架,是解决问题的关键。我国在海洋负排放地球生态工程的碳汇方面具有坚实的理论支撑和国际合作基础,示范应用条件逐渐成熟,但缺乏相应的效益量化方法,环境监管框架亟需建立。据此,本文提出海洋碳汇发展的如下思路:促进多部门协同,打通海洋碳汇价值实现链条;完善效益量化体系,实现国际标准互认;培养海洋碳汇专业人才,应对环境监管要求。
The ocean is considered to play a vital role in tackling climate change. Through human interventions such as ecological restoration, large-scale algae cultivation, and seawater alkalization, the carbon sequestration and storage capacity of marine systems can be effectively enhanced, thereby mitigating global warming. However, the realization of the value of ocean carbon sinks still faces numerous challenges, including unclear benefit assessments and how to incorporate environmental impacts into regulation. Key solutions to these issues include accounting for the potential increase in carbon sinks, controlling costs, developing a standardized methodological framework, and improving the regulatory framework for environmental impacts. China has a solid theoretical foundation and an international cooperation basis for carbon sinks in marine negative emission ecological engineering. The conditions for demonstration applications are gradually maturing, but there is a lack of corresponding benefit quantification methods, and an environmental regulatory framework urgently needs to be established. Accordingly, this paper proposes the following ideas for the development of ocean carbon sinks: Promote multi-departmental collaboration to streamline the value realization chain of ocean carbon sinks; Improve the benefit quantification system to achieve mutual recognition of international standards; Cultivate specialized talent in marine carbon sinks to meet environmental regulatory requirements.
[1] | Fuhrman, J., Clarens, A.F., McJeon, H., Patel, P., Ou, Y., Doney, S.C., et al. (2021) The Role of Negative Emissions in Meeting China’s 2060 Carbon Neutrality Goal. Oxford Open Climate Change, 1, kgab004. https://doi.org/10.1093/oxfclm/kgab004 |
[2] | 焦念志. 研发海洋“负排放”技术支撑国家“碳中和”需求[J]. 中国科学院院刊, 2021, 36(2): 179-187. |
[3] | 焦念志, 骆庭伟, 刘纪化, 等. 海洋负排放——基于地球系统科学思维的海洋科技变革[J]. 中国科学院院刊, 2023, 38(9): 1294-1305. |
[4] | Aricò, S., Jesus, A., Bakker, E., et al. (2021) Integrated Ocean Carbon Research: A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean Carbon Research and Observations for the Next Decade. The Intergovernmental Oceanographic Commission of UNESCO. |
[5] | 唐启升, 毛玉泽, 蒋增杰. 渔业碳汇与碳汇渔业定义及其相关问题的辨析[J]. 渔业科学进展, 2022, 43(5): 1-7. |
[6] | 刘大海, 董通, 刘超, 等. 海洋碳汇分类方法框架探索与构建[J]. 海洋科学进展, 2024, 42(2): 358-369. |
[7] | IOC-R (2021) Integrated Ocean Carbon Research: A Summary of Ocean Carbon Research, and Vision of Coordinated Ocean Carbon Research and Observations for the Next Decade. https://doi:10.25607/h0gj-pq41 |
[8] | 杨越, 陈玲, 薛澜. 中国蓝碳市场建设的顶层设计与策略选择[J]. 中国人口·资源与环境, 2021, 31(9): 92-103. |
[9] | 陈光程, 王静, 许方宏, 等. 滨海蓝碳碳汇项目开发现状及推动我国蓝碳碳汇项目开发的建议[J]. 应用海洋学学报, 2022, 41(2): 177-184. |
[10] | Hochard, J.P., Hamilton, S. and Barbier, E.B. (2019) Mangroves Shelter Coastal Economic Activity from Cyclones. Proceedings of the National Academy of Sciences, 116, 12232-12237. https://doi.org/10.1073/pnas.1820067116 |
[11] | Krauss, K.W., Allen, J.A. and Cahoon, D.R. (2003) Differential Rates of Vertical Accretion and Elevation Change among Aerial Root Types in Micronesian Mangrove Forests. Estuarine, Coastal and Shelf Science, 56, 251-259. https://doi.org/10.1016/s0272-7714(02)00184-1 |
[12] | Sousa, A.I., Lillebø, A.I., Pardal, M.A. and Caçador, I. (2010) Productivity and Nutrient Cycling in Salt Marshes: Contribution to Ecosystem Health. Estuarine, Coastal and Shelf Science, 87, 640-646. https://doi.org/10.1016/j.ecss.2010.03.007 |
[13] | Marques, B., Lillebø, A.I., Pereira, E. and Duarte, A.C. (2011) Mercury Cycling and Sequestration in Salt Marshes Sediments: An Ecosystem Service Provided by Juncus Maritimus and Scirpus Maritimus. Environmental Pollution, 159, 1869-1876. https://doi.org/10.1016/j.envpol.2011.03.036 |
[14] | Garcon, V., Laffoley, D. and Baxter, J.M. (2019) Ocean Deoxygenation: Everyone’s Problem. Causes, Impacts, Consequences and Solutions. IUCN. |
[15] | Cullen-Unsworth, L. and Unsworth, R. (2013) Seagrass Meadows, Ecosystem Services, and Sustainability. Environment: Science and Policy for Sustainable Development, 55, 14-28. https://doi.org/10.1080/00139157.2013.785864 |
[16] | 邵莉莉. 碳中和背景下国际碳排放治理的“共同责任”构建——共同但有区别责任的困境及消解[J]. 政治与法律, 2022(2): 30-43. |
[17] | Cao, L. and Caldeira, K. (2010) Can Ocean Iron Fertilization Mitigate Ocean Acidification? Climatic Change, 99, 303-311. https://doi.org/10.1007/s10584-010-9799-4 |
[18] | Galbraith, E.D., Le Mézo, P., Solanes Hernandez, G., Bianchi, D. and Kroodsma, D. (2019) Growth Limitation of Marine Fish by Low Iron Availability in the Open Ocean. Frontiers in Marine Science, 6, Article 509. https://doi.org/10.3389/fmars.2019.00509 |
[19] | Gesam, P. (2019) High Level Review of a Wide Range of Proposed Marine Geoengineering Techniques. http://www.gesamp.org/publications/high-level-review-of-a-wide-range-of-proposed-marine-geoengineering-techniques |
[20] | Renforth, P. and Henderson, G. (2017) Assessing Ocean Alkalinity for Carbon Sequestration. Reviews of Geophysics, 55, 636-674. https://doi.org/10.1002/2016rg000533 |
[21] | Ilyina, T., Wolf-Gladrow, D., Munhoven, G. and Heinze, C. (2013) Assessing the Potential of Calcium-Based Artificial Ocean Alkalinization to Mitigate Rising Atmospheric CO2 and Ocean Acidification. Geophysical Research Letters, 40, 5909-5914. https://doi.org/10.1002/2013gl057981 |
[22] | Keller, D.P., Koeve, W. and Oschlies, A. (2016) Could Artificial Ocean Alkalinization Protect Tropical Coral Ecosystems from Ocean Acidification? Environmental Research Letters, 11, Article 074008. https://doi.org/10.1088/1748-9326/11/7/074008 |
[23] | Hartmann, J., West, A.J., Renforth, P., Köhler, P., De La Rocha, C.L., Wolf-Gladrow, D.A., et al. (2013) Enhanced Chemical Weathering as a Geoengineering Strategy to Reduce Atmospheric Carbon Dioxide, Supply Nutrients, and Mitigate Ocean Acidification. Reviews of Geophysics, 51, 113-149. https://doi.org/10.1002/rog.20004 |
[24] | Jin, P., Zhang, J., Wan, J., Overmans, S., Gao, G., Ye, M., et al. (2021) The Combined Effects of Ocean Acidification and Heavy Metals on Marine Organisms: A Meta-Analysis. Frontiers in Marine Science, 8, Article 801889. https://doi.org/10.3389/fmars.2021.801889 |
[25] | 董敬明, 刘子飞, 陈丽梅. 我国海洋碳汇交易政策、实践及展望[J]. 中国科学院院刊, 2024, 39(3): 519-527. |
[26] | 王秀君, 章海波, 韩广轩. 中国海岸带及近海碳循环与蓝碳潜力[J]. 中国科学院院刊, 2016, 31(10): 1218-1225. |
[27] | 杨宇峰, 王庆, 贺志理, 等. 大型海藻规模栽培是增加海洋碳汇和解决近海环境问题的有效途径[J]. 中国科学院院刊, 2021, 36(3): 259-269. |
[28] | Howard, J., Hoyt, S., Isensee, K., et al. (2014) Coastal Blue Carbon: Methods for Assessing Carbon Stocks and Emissions Factors in Mangroves, Tidal Salt Marshes, and Seagrass Meadows. Conservation International, Intergovernmental Oceanographic Commission of UNESCO, International Union for Conservation of Nature. |
[29] | 邵桂兰, 刘冰, 李晨. 我国主要海域海水养殖碳汇能力评估及其影响效应——基于我国9个沿海省份面板数据[J]. 生态学报, 2019, 39(7): 2614-2625. |
[30] | 魏震昊, 孙国茂, 姚中杰. 自愿减排机制下海洋碳汇交易的双重效益与影响因素[J]. 中国人口·资源与环境, 2024, 34(4): 48-59. |
[31] | 张继红, 刘毅, 吴文广, 等. 海洋渔业碳汇项目方法学探究[J]. 渔业科学进展, 2022, 43(5): 151-159. |
[32] | Fuso Nerini, F., Sovacool, B., Hughes, N., Cozzi, L., Cosgrave, E., Howells, M., et al. (2019) Connecting Climate Action with Other Sustainable Development Goals. Nature Sustainability, 2, 674-680. https://doi.org/10.1038/s41893-019-0334-y |