|
CRISPR-Cas系统在病原微生物检测中的应用
|
Abstract:
快速、灵敏和特异性地检测病原微生物,在临床诊断和传染病控制中具有重要意义。早期准确检测是快速控制疫区疫情的有效措施,尤其是在缺乏有效治疗和疫苗的情况下。聚合酶链式反应(PCR)作为常用的核酸检测技术和疾病诊断的“金标准”,有着高灵敏度的优势,但同时也存在以牺牲特异性为代价的现象。酶联免疫吸附试验(ELISA)是一种快速、特异性强的蛋白质和小分子诊断工具。然而,灵敏度低和样品预处理复杂的操作步骤极大地限制了该方法现场检测的应用。因此,快速、灵敏和特异性的检测技术成为了急需解决的要点,随着技术的应用和发展,基于CRISPR-Cas的生物传感系统的优异性能在开发病原微生物诊断技术方面引起了人们的关注。本文综述了CRISPR/Cas系统在病原微生物检测的作用机制及原理,总结了新型检测技术的优缺点并对应用发展前景进行展望。
Rapid, sensitive, and specific detection of pathogenic microorganisms is crucial for clinical diagnosis and infectious disease control. Early and accurate detection is an effective measure to quickly control epidemic outbreaks, especially in the absence of effective treatments and vaccines. Polymerase Chain Reaction (PCR) is a commonly used nucleic acid testing technology and the “gold standard” for disease diagnosis with high sensitivity. However, it often sacrifices specificity. Enzyme-Linked Immunosorbent Assay (ELISA) is a rapid and highly specific diagnostic tool for proteins and small molecules. Nevertheless, its low sensitivity and complex sample preprocessing steps greatly limit its application in on-site testing. Therefore, the development of rapid, sensitive, and specific detection technologies has become an urgent need. With the application and advancement of technology, the excellent performance of CRISPR-Cas based biosensing systems has attracted attention in the development of pathogenic microorganism diagnostic techniques. This article reviews the mechanisms and principles of CRISPR/Cas systems in pathogenic microorganism detection, summarizes the advantages and disadvantages of novel detection technologies, and provides an outlook on their future applications.
[1] | Li, Y., Li, S., Wang, J. and Liu, G. (2019) CRISPR/Cas Systems Towards Next-Generation Biosensing. Trends in Biotechnology, 37, 730-743. https://doi.org/10.1016/j.tibtech.2018.12.005 |
[2] | Jansen, R., van Embden, J.D.A., Gaastra, W. and Schouls, L.M. (2002) Identification of Genes That Are Associated with DNA Repeats in Prokaryotes. Molecular Microbiology, 43, 1565-1575. https://doi.org/10.1046/j.1365-2958.2002.02839.x |
[3] | Zhang, Y., Wu, Y., Wu, Y., Chang, Y. and Liu, M. (2021) CRISPR-Cas Systems: From Gene Scissors to Programmable Biosensors. TrAC Trends in Analytical Chemistry, 137, Article 116210. https://doi.org/10.1016/j.trac.2021.116210 |
[4] | Shmakov, S., Abudayyeh, O.O., Makarova, K.S., Wolf, Y.I., Gootenberg, J.S., Semenova, E., et al. (2015) Discovery and Functional Characterization of Diverse Class 2 CRISPR-Cas Systems. Molecular Cell, 60, 385-397. https://doi.org/10.1016/j.molcel.2015.10.008 |
[5] | Hille, F., Richter, H., Wong, S.P., Bratovič, M., Ressel, S. and Charpentier, E. (2018) The Biology of CRISPR-Cas: Backward and Forward. Cell, 172, 1239-1259. https://doi.org/10.1016/j.cell.2017.11.032 |
[6] | Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., et al. (2015) An Updated Evolutionary Classification of CRISPR-Cas Systems. Nature Reviews Microbiology, 13, 722-736. https://doi.org/10.1038/nrmicro3569 |
[7] | Deltcheva, E., Chylinski, K., Sharma, C.M., Gonzales, K., Chao, Y., Pirzada, Z.A., et al. (2011) CRISPR RNA Maturation by Trans-Encoded Small RNA and Host Factor RNase III. Nature, 471, 602-607. https://doi.org/10.1038/nature09886 |
[8] | Anders, C., Niewoehner, O., Duerst, A. and Jinek, M. (2014) Structural Basis of PAM-Dependent Target DNA Recognition by the Cas9 Endonuclease. Nature, 513, 569-573. https://doi.org/10.1038/nature13579 |
[9] | Jinek, M., Chylinski, K., Fonfara, I., Hauer, M., Doudna, J.A. and Charpentier, E. (2012) A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science, 337, 816-821. https://doi.org/10.1126/science.1225829 |
[10] | Dong, D., Ren, K., Qiu, X., Zheng, J., Guo, M., Guan, X., et al. (2016) The Crystal Structure of Cpf1 in Complex with CRISPR RNA. Nature, 532, 522-526. https://doi.org/10.1038/nature17944 |
[11] | Yamano, T., Nishimasu, H., Zetsche, B., Hirano, H., Slaymaker, I.M., Li, Y., et al. (2016) Crystal Structure of Cpf1 in Complex with Guide RNA and Target DNA. Cell, 165, 949-962. https://doi.org/10.1016/j.cell.2016.04.003 |
[12] | Chen, J.S., Ma, E., Harrington, L.B., Da Costa, M., Tian, X., Palefsky, J.M., et al. (2018) CRISPR-Cas12a Target Binding Unleashes Indiscriminate Single-Stranded DNase Activity. Science, 360, 436-439. https://doi.org/10.1126/science.aar6245 |
[13] | East-Seletsky, A., O’Connell, M.R., Knight, S.C., Burstein, D., Cate, J.H.D., Tjian, R., et al. (2016) Two Distinct RNase Activities of CRISPR-C2c2 Enable Guide-RNA Processing and RNA Detection. Nature, 538, 270-273. https://doi.org/10.1038/nature19802 |
[14] | Liu, L., Li, X., Ma, J., Li, Z., You, L., Wang, J., et al. (2017) The Molecular Architecture for RNA-Guided RNA Cleavage by Cas13a. Cell, 170, 714-726.e10. https://doi.org/10.1016/j.cell.2017.06.050 |
[15] | Harrington, L.B., Burstein, D., Chen, J.S., Paez-Espino, D., Ma, E., Witte, I.P., et al. (2018) Programmed DNA Destruction by Miniature CRISPR-Cas14 Enzymes. Science, 362, 839-842. https://doi.org/10.1126/science.aav4294 |
[16] | Wang, G., Tian, W., Liu, X., Ren, W. and Liu, C. (2020) New CRISPR-Derived MicroRNA Sensing Mechanism Based on Cas12a Self-Powered and Rolling Circle Transcription-Unleashed Real-Time crRNA Recruiting. Analytical Chemistry, 92, 6702-6708. https://doi.org/10.1021/acs.analchem.0c00680 |
[17] | Li, S., Cheng, Q., Wang, J., Li, X., Zhang, Z., Gao, S., et al. (2018) CRISPR-Cas12a-Assisted Nucleic Acid Detection. Cell Discovery, 4, Article No. 20. https://doi.org/10.1038/s41421-018-0028-z |
[18] | Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., et al. (2016) Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165, 1255-1266. https://doi.org/10.1016/j.cell.2016.04.059 |
[19] | Li, L., Li, S. and Wang, J. (2018) CRISPR-Cas12b-Assisted Nucleic Acid Detection Platform. bioRxiv. https://doi.org/10.1101/362889 |
[20] | Li, J., Yang, S., Zuo, C., Dai, L., Guo, Y. and Xie, G. (2020) Applying CRISPR-Cas12a as a Signal Amplifier to Construct Biosensors for Non-DNA Targets in Ultralow Concentrations. ACS Sensors, 5, 970-977. https://doi.org/10.1021/acssensors.9b02305 |
[21] | Feldmann, H., Nichol, S.T., Klenk, H., Peters, C.J. and Sanchez, A. (1994) Characterization of Filoviruses Based on Differences in Structure and Antigenicity of the Virion Glycoprotein. Virology, 199, 469-473. https://doi.org/10.1006/viro.1994.1147 |
[22] | Gire, S.K., Goba, A., Andersen, K.G., Sealfon, R.S.G., Park, D.J., Kanneh, L., et al. (2014) Genomic Surveillance Elucidates Ebola Virus Origin and Transmission during the 2014 Outbreak. Science, 345, 1369-1372. https://doi.org/10.1126/science.1259657 |
[23] | Sanchez, A., Ksiazek, T.G., Rollin, P.E., Miranda, M.E.G., Trappier, S.G., Khan, A.S., et al. (1999) Detection and Molecular Characterization of Ebola Viruses Causing Disease in Human and Nonhuman Primates. The Journal of Infectious Diseases, 179, S164-S169. https://doi.org/10.1086/514282 |
[24] | Sullivan, N.J., Sanchez, A., Rollin, P.E., Yang, Z. and Nabel, G.J. (2000) Development of a Preventive Vaccine for Ebola Virus Infection in Primates. Nature, 408, 605-609. https://doi.org/10.1038/35046108 |
[25] | Rasmussen, S.A., Jamieson, D.J., Honein, M.A. and Petersen, L.R. (2016) Zika Virus and Birth Defects—Reviewing the Evidence for Causality. New England Journal of Medicine, 374, 1981-1987. https://doi.org/10.1056/nejmsr1604338 |
[26] | Brasil, P., Pereira, J.P., Moreira, M.E., Ribeiro Nogueira, R.M., Damasceno, L., Wakimoto, M., et al. (2016) Zika Virus Infection in Pregnant Women in Rio de Janeiro. New England Journal of Medicine, 375, 2321-2334. https://doi.org/10.1056/nejmoa1602412 |
[27] | Smith, D.W. and Mackenzie, J. (2016) Zika Virus and Guillain-Barré Syndrome: Another Viral Cause to Add to the List. The Lancet, 387, 1486-1488. https://doi.org/10.1016/s0140-6736(16)00564-x |
[28] | Waggoner, J.J., Gresh, L., Vargas, M.J., Ballesteros, G., Tellez, Y., Soda, K.J., et al. (2016) Viremia and Clinical Presentation in Nicaraguan Patients Infected with Zika Virus, Chikungunya Virus, and Dengue Virus. Clinical Infectious Diseases, 63, 1584-1590. https://doi.org/10.1093/cid/ciw589 |
[29] | Pardee, K., Green, A.A., Takahashi, M.K., Braff, D., Lambert, G., Lee, J.W., et al. (2016) Rapid, Low-Cost Detection of Zika Virus Using Programmable Biomolecular Components. Cell, 165, 1255-1266. https://doi.org/10.1016/j.cell.2016.04.059 |
[30] | Gootenberg, J.S., Abudayyeh, O.O., Lee, J.W., Essletzbichler, P., Dy, A.J., Joung, J., et al. (2017) Nucleic Acid Detection with CRISPR-Cas13a/c2c2. Science, 356, 438-442. https://doi.org/10.1126/science.aam9321 |
[31] | Zhu, N., Zhang, D., Wang, W., Li, X., Yang, B., Song, J., et al. (2020) A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine, 382, 727-733. https://doi.org/10.1056/nejmoa2001017 |
[32] | Centers for Disease Control and Prevention (2020) Real-Time RT-PCR Panel for Detection 2019-Novel Coronavirus Centers for Disease Control and Prevention. |
[33] | Feng, W., Newbigging, A.M., Le, C., Pang, B., Peng, H., Cao, Y., et al. (2020) Molecular Diagnosis of COVID-19: Challenges and Research Needs. Analytical Chemistry, 92, 10196-10209. https://doi.org/10.1021/acs.analchem.0c02060 |
[34] | Carter, L.J., Garner, L.V., Smoot, J.W., Li, Y., Zhou, Q., Saveson, C.J., et al. (2020) Assay Techniques and Test Development for COVID-19 Diagnosis. ACS Central Science, 6, 591-605. https://doi.org/10.1021/acscentsci.0c00501 |
[35] | Joung, J., Ladha, A., Saito, M., Segel, M., Bruneau, R., Huang, M.W., et al. (2020) Point-of-Care Testing for COVID-19 Using SHERLOCK Diagnostics. MedRxiv. https://doi.org/10.1101/2020.05.04.20091231 |
[36] | Joung, J., Ladha, A., Saito, M., Kim, N., Woolley, A.E., Segel, M., et al. (2020) Detection of SARS-CoV-2 with SHERLOCK One-Pot Testing. New England Journal of Medicine, 383, 1492-1494. https://doi.org/10.1056/nejmc2026172 |
[37] | zur Hausen, H. (2002) Papillomaviruses and Cancer: From Basic Studies to Clinical Application. Nature Reviews Cancer, 2, 342-350. https://doi.org/10.1038/nrc798 |
[38] | Muñoz, N., Bosch, F.X., de Sanjosé, S., Herrero, R., Castellsagué, X., Shah, K.V., et al. (2003) Epidemiologic Classification of Human Papillomavirus Types Associated with Cervical Cancer. New England Journal of Medicine, 348, 518-527. https://doi.org/10.1056/nejmoa021641 |
[39] | Wang, Q., Zhang, B., Xu, X., Long, F. and Wang, J. (2018) CRISPR-Typing PCR (ctPCR), a New Cas9-Based DNA Detection Method. Scientific Reports, 8, Article No. 14126. https://doi.org/10.1038/s41598-018-32329-x |
[40] | Zhang, B., Wang, Q., Xu, X., Xia, Q., Long, F., Li, W., et al. (2018) Detection of Target DNA with a Novel Cas9/sgRNAs-Associated Reverse PCR (CARP) Technique. Analytical and Bioanalytical Chemistry, 410, 2889-2900. https://doi.org/10.1007/s00216-018-0873-5 |
[41] | Zhang, B., Xia, Q., Wang, Q., Xia, X. and Wang, J. (2018) Detecting and Typing Target DNA with a Novel CRISPR-Typing PCR (ctPCR) Technique. Analytical Biochemistry, 561, 37-46. https://doi.org/10.1016/j.ab.2018.09.012 |
[42] | Pantosti, A. (2012) Methicillin-Resistant Staphylococcus Aureus Associated with Animals and Its Relevance to Human Health. Frontiers in Microbiology, 3, Article 127. https://doi.org/10.3389/fmicb.2012.00127 |
[43] | Boucher, H., Miller, L.G. and Razonable, R.R. (2010) Serious Infections Caused by Methicillin‐Resistant Staphylococcus aureus. Clinical Infectious Diseases, 51, S183-S197. https://doi.org/10.1086/653519 |
[44] | Brumfitt, W. and Hamilton-Miller, J. (1989) Methicillin-Resistant Staphylococcus aureus. New England Journal of Medicine, 320, 1188-1196. https://doi.org/10.1056/nejm198905043201806 |
[45] | Guk, K., Keem, J.O., Hwang, S.G., Kim, H., Kang, T., Lim, E., et al. (2017) A Facile, Rapid and Sensitive Detection of MRSA Using a CRISPR-Mediated DNA FISH Method, Antibody-Like Dcas9/sgRNA Complex. Biosensors and Bioelectronics, 95, 67-71. https://doi.org/10.1016/j.bios.2017.04.016 |
[46] | Kaper, J.B., Nataro, J.P. and Mobley, H.L.T. (2004) Pathogenic Escherichia Coli. Nature Reviews Microbiology, 2, 123-140. https://doi.org/10.1038/nrmicro818 |
[47] | Ostroff, S.M., Tarr, P.I., Neill, M.A., Lewis, J.H., Hargrett-Bean, N. and Kobayashi, J.M. (1989) Toxin Genotypes and Plasmid Profiles as Determinants of Systemic Sequelae in Escherichia coli O157:H7 Infections. Journal of Infectious Diseases, 160, 994-998. https://doi.org/10.1093/infdis/160.6.994 |
[48] | Nataro, J.P. and Kaper, J.B. (1998) Diarrheagenic Escherichia coli. Clinical Microbiology Reviews, 11, 142-201. https://doi.org/10.1128/cmr.11.1.142 |
[49] | Sun, X., Wang, Y., Zhang, L., Liu, S., Zhang, M., Wang, J., et al. (2020) CRISPR-Cas9 Triggered Two-Step Isothermal Amplification Method for E. coli O157:H7 Detection Based on a Metal-Organic Framework Platform. Analytical Chemistry, 92, 3032-3041. https://doi.org/10.1021/acs.analchem.9b04162 |
[50] | Wang, T., Liu, Y., Sun, H., Yin, B. and Ye, B. (2019) An RNA‐Guided Cas9 Nickase‐Based Method for Universal Isothermal DNA Amplification. Angewandte Chemie International Edition, 58, 5382-5386. https://doi.org/10.1002/anie.201901292 |