全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

论利用人工智能筛查网络知识产权侵权
On Using Artificial Intelligence to Screen Network Intellectual Property Infringement

DOI: 10.12677/ojls.2024.12121019, PP. 7180-7185

Keywords: 人工智能,网络知识产权,侵权筛查
Artificial Intelligence
, Network Intellectual Property, Infringement Screening

Full-Text   Cite this paper   Add to My Lib

Abstract:

在当今数字化迅猛发展的时代,网络知识产权侵权现象日益猖獗,给知识产权所有者和社会创新环境带来了严重的负面影响。本论文深入探讨了人工智能在筛查网络知识产权侵权这一关键领域的应用。通过综合运用多种研究方法,详细阐述了其背后的深刻意义。研究不仅聚焦于人工智能技术在筛查过程中的具体应用方式,还深入剖析了其为筛查工作带来的显著优势。同时,也全面审视了人工智能在筛查网络知识产权侵权时所面临的一系列严峻挑战。进一步提出了有针对性的应对策略和措施,旨在为推动人工智能在网络知识产权侵权筛查领域的有效应用、完善知识产权保护体系提供有力的理论支持和实践指导。
In today’s era of rapid digital development, the phenomenon of online intellectual property infringement is becoming increasingly rampant, which has brought serious negative impacts to intellectual property owners and the social innovation environment. This paper explores in depth the application of artificial intelligence in the key field of screening network intellectual property infringement. By comprehensively utilizing various research methods, including literature analysis, case studies, and empirical research, the profound significance behind it is elaborated in detail. The research not only focuses on the specific application of artificial intelligence technology in the screening process, such as natural language processing, image recognition, machine learning algorithms, and big data analysis, but also deeply analyzes the significant advantages it brings to screening work, including efficient and accurate screening results, all-weather real-time monitoring and response capabilities, as well as intelligent analysis and prediction functions. At the same time, it also comprehensively examines a series of severe challenges faced by artificial intelligence in screening network intellectual property infringement, such as inherent limitations of technology, data quality and privacy issues, complex legal and ethical challenges, as well as human interference and countermeasures. Further targeted response strategies and measures have been proposed, aiming to provide strong theoretical support and practical guidance for promoting the effective application of artificial intelligence in the field of network intellectual property infringement screening and improving the intellectual property protection system.

References

[1]  王文敏. 网络直播平台的著作权侵权风险与规制路径研究[J]. 时代法学, 2024, 22(5): 17-28.
[2]  陈洁. 电商平台知识产权侵权治理的困境与应对研究[J]. 商场现代化, 2024(21): 44-46.
[3]  毕文轩. 论电商平台知识产权的公私协同治理模式[J]. 上海交通大学学报(哲学社会科学版), 2024, 32(8): 68-81, 107.
[4]  殷晓琪. 数字经济时代知识产权保护的创新路径研究[J]. 商展经济, 2024(18): 143-146.
[5]  蒙大斌, 孙小蔓. 基于NFT数字资产的知识产权保护研究[J]. 当代经济, 2024, 41(9): 37-44.
[6]  吴令娴. 大语言模型发展路径分析及研究[J]. 价值工程, 2024, 43(27): 148-150.
[7]  王菲. 建筑颜色识别算法研究——基于卷积神经网络和图像识别技术[J]. 办公自动化, 2024, 29(19): 54-56.
[8]  张晋铭. 人工智能中图像识别技术应用优势与路径探究[J]. 信息记录材料, 2024, 25(8): 58-60.
[9]  韩伟, 李卓阳. 计算机图像识别技术的应用分析[J]. 信息记录材料, 2024, 25(6): 143-145.
[10]  侯敏. 量子机器学习算法研究概述[J]. 通讯世界, 2024, 31(8): 139-141.
[11]  冯晓青. 知识产权保护论[M]. 北京: 中国政法大学出版社: 2022.
[12]  刘权. 区块链与人工智能[M]. 北京: 人民邮电出版社: 2019.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133