全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

单晶高温合金及其显微孔洞的研究进展
Research Progress of Single Crystal Superalloys and Their Micropores

DOI: 10.12677/ms.2024.1412190, PP. 1750-1765

Keywords: 显微孔洞,缺陷,定向凝固,高温合金
Micropores
, Defect, Directional Solidification, Superalloy

Full-Text   Cite this paper   Add to My Lib

Abstract:

在航空航天领域,单晶高温合金是发动机和燃气轮机热端部件制备的关键材料,然而其制备过程困难,常伴有微观缺陷的产生。其中,显微孔洞作为一类常见且危害较大的微观缺陷,对叶片性能影响显著,这一问题已成为科研人员关注的焦点。本文全面综述了单晶高温合金相关研究成果,首先详细介绍了定向凝固法制备单晶高温合金的过程,涵盖凝固原理、影响因素、常见技术以及单晶制备方法等方面;深入分析了显微孔洞的形成机制及其影响因素,着重探讨了固溶微孔和铸态微孔的形成过程与影响因素;进而提出一系列优化单晶高温合金性能的有效策略,包括凝固参数优化、热处理工艺改进以及合金成分设计等;最后对未来研究方向进行了展望,如探索新型制备技术(增材制造技术应用和微重力凝固技术研究)以及深化显微孔洞形成机制研究(多尺度模拟研究和原位表征技术应用)。本研究旨在为提升单晶高温合金性能、拓展其应用领域提供坚实的理论支撑,助力航空航天等高温领域的进一步发展。
In the aerospace field, single crystal superalloys are crucial materials for the fabrication of hot-section components in engines and gas turbines. However, their manufacturing process is fraught with difficulties, often accompanied by the generation of microscopic defects. Among these, micropores, as a common and highly detrimental type of microscopic defect, have a significant impact on blade performance, which has become a focus of attention among researchers. This article comprehensively reviews the research findings related to single crystal superalloys. Firstly, it elaborates on the process of preparing single crystal superalloys using the directional solidification method, covering aspects such as the solidification principle, influencing factors, common techniques, and single crystal preparation methods. It then conducts an in-depth analysis of the formation mechanisms and influencing factors of micropores, with a particular emphasis on the formation processes and influencing factors of solution micropores and cast micropores. Subsequently, a series of effective strategies for optimizing the performance of single crystal superalloys are proposed, including the optimization of solidification parameters, improvement of heat treatment processes, and design of alloy compositions. Finally, future research directions are envisioned, such as the exploration of novel manufacturing techniques (application of additive manufacturing technology and research on microgravity solidification technology) and the in-depth study of the formation mechanisms of micropores (multi-scale simulation research and in-situ characterization technology application). The aim of this research is to provide a solid theoretical foundation for enhancing the performance and expanding the application fields of single crystal superalloys, thereby facilitating the further development of high-temperature fields such as aerospace.

References

[1]  姜文, 姚卫星, 王英玉. 铸件中显微孔洞特征及其对疲劳寿命影响的研究进展[J]. 航空工程进展, 2019, 10(4): 445, 455, 486.
[2]  Cervellon, A., Hémery, S., Kürnsteiner, P., Gault, B., Kontis, P. and Cormier, J. (2020) Crack Initiation Mechanisms during Very High Cycle Fatigue of Ni-Based Single Crystal Superalloys at High Temperature. Acta Materialia, 188, 131-144.
https://doi.org/10.1016/j.actamat.2020.02.012
[3]  Ruttert, B., Meid, C., Mujica Roncery, L., Lopez-Galilea, I., Bartsch, M. and Theisen, W. (2018) Effect of Porosity and Eutectics on the High-Temperature Low-Cycle Fatigue Performance of a Nickel-Base Single-Crystal Superalloy. Scripta Materialia, 155, 139-143.
https://doi.org/10.1016/j.scriptamat.2018.06.036
[4]  Han, G., Zhang, Z., Li, J., Jin, T., Sun, X. and Hu, Z. (2013) High Cycle Fatigue Behavior of a Nickel—Based Single Crystal Superalloy DD98M at 900˚C. Acta Metallurgica Sinica, 48, 170-175.
https://doi.org/10.3724/sp.j.1037.2011.00433
[5]  Bortoluci Ormastroni, L.M., Mataveli Suave, L., Cervellon, A., Villechaise, P. and Cormier, J. (2020) LCF, HCF and VHCF Life Sensitivity to Solution Heat Treatment of a Third-Generation Ni-Based Single Crystal Superalloy. International Journal of Fatigue, 130, Article ID: 105247.
https://doi.org/10.1016/j.ijfatigue.2019.105247
[6]  Cervellon, A., Cormier, J., Mauget, F. and Hervier, Z. (2017) VHCF Life Evolution after Microstructure Degradation of a Ni-Based Single Crystal Superalloy. International Journal of Fatigue, 104, 251-262.
https://doi.org/10.1016/j.ijfatigue.2017.07.021
[7]  Hong, H.U., Choi, B.G., Kim, I.S., Yoo, Y.S. and Jo, C.Y. (2011) Characterization of Deformation Mechanisms during Low Cycle Fatigue of a Single Crystal Nickel-Based Superalloy. Journal of Materials Science, 46, 5245-5251.
https://doi.org/10.1007/s10853-011-5462-3
[8]  Jiang, R., Bull, D.J., Evangelou, A., Harte, A., Pierron, F., Sinclair, I., et al. (2018) Strain Accumulation and Fatigue Crack Initiation at Pores and Carbides in a SX Superalloy at Room Temperature. International Journal of Fatigue, 114, 22-33.
https://doi.org/10.1016/j.ijfatigue.2018.05.003
[9]  Liu, Y., Kang, M., Wu, Y., Wang, M., Gao, H. and Wang, J. (2017) Effects of Microporosity and Precipitates on the Cracking Behavior in Polycrystalline Superalloy Inconel 718. Materials Characterization, 132, 175-186.
https://doi.org/10.1016/j.matchar.2017.08.012
[10]  Chen, Q.Z., Jones, N. and Knowles, D.M. (2002) The Microstructures of Base/Modified RR2072 SX Superalloys and Their Effects on Creep Properties at Elevated Temperatures. Acta Materialia, 50, 1095-1112.
https://doi.org/10.1016/s1359-6454(01)00410-4
[11]  MacLachlan, D.W. and Knowles, D.M. (2001) Modelling and Prediction of the Stress Rupture Behaviour of Single Crystal Superalloys. Materials Science and Engineering: A, 302, 275-285.
https://doi.org/10.1016/s0921-5093(00)01829-3
[12]  Yi, J.Z., Torbet, C.J., Feng, Q., Pollock, T.M. and Jones, J.W. (2007) Ultrasonic Fatigue of a Single Crystal Ni-Base Superalloy at 1000˚C. Materials Science and Engineering: A, 443, 142-149.
https://doi.org/10.1016/j.msea.2006.08.028
[13]  Bogno, A.A., Valloton, J., Rappaz, M., Qureshi, A. and Henein, H. (2024) Tailored Solidification Microstructures for Innovative Use of High-Density Materials in Lightweight Products. Journal of Alloys and Metallurgical Systems, 5, Article ID: 100061.
https://doi.org/10.1016/j.jalmes.2024.100061
[14]  Hu, N., Huang, Y., Wang, K., Hu, W., Chen, J. and Deng, H. (2022) Solidification of Undercooled Liquid under Supergravity Field by Phase-Field Crystal Approach. Metals, 12, Article 232.
https://doi.org/10.3390/met12020232
[15]  周伟, 刘林, 介子奇, 等. 硼对K4169高温合金流动性及缩松的影响[J]. 稀有金属材料与工程, 2014, 43(12): 3082-3088.
[16]  黄乾尧, 李汉康. 高温合金[M]. 北京: 冶金工业出版社, 2000.
[17]  胡汉起. 金属凝固原理[M]. 北京: 机械工业出版社, 2010.
[18]  黄敏, 张功, 王栋, 等. 复杂镍基单晶铸件显微孔洞的形成机理[J]. 材料工程, 2020, 48(2): 123-132.
[19]  邹碧康. 服役破损叶片顶端磨损区域的曲面重构技术研究[D]: [硕士学位论文]. 武汉: 华中科技大学, 2017.
[20]  刘林, 张军, 沈军, 等. 高温合金定向凝固技术研究进展[J]. 中国材料进展, 2010, 29(7): 1-9.
[21]  Xue, Y., Wang, X., Zhao, J., Shi, Z., Liu, S. and Li, J. (2023) Effect of Withdrawal Rate on Solidification Microstructures of DD9 Single Crystal Turbine Blade. Materials, 16, Article 3409.
https://doi.org/10.3390/ma16093409
[22]  Jeong, J.J., Lee, H., Yun, D.W., Jeong, H.W., Yoo, Y., Seo, S., et al. (2023) Analysis of a Single Crystal Solidification Process of an Ni-Based Superalloy Using a CAFE Model. Korean Journal of Metals and Materials, 61, 126-136.
https://doi.org/10.3365/kjmm.2023.61.2.126
[23]  Zhang, X., He, Y., Zhao, S., Ding, H. and Hu, Y. (2023) Innovative Liquid Metal Strategy for Real-Time Thermal Control in Additive Manufacturing. Journal of Materials Processing Technology, 322, Article ID: 118166.
https://doi.org/10.1016/j.jmatprotec.2023.118166
[24]  南晓斌, 材料工程. Pt元素扩散行为对DD5单晶高温合金组织和性能的影响[D]: [硕士学位论文]. 太原: 太原理工大学, 2022.
[25]  王雷, 奚运涛, 王世清, 等. TWIP钢在高温ECAP过程中的微观组织及孪晶行为研究[J]. 材料导报, 2018, 32(z1): 432-438.
[26]  殷克勤. 我国航空涡轮高温材料及工艺进展[J]. 材料工程, 1997(9): 3-5, 12.
[27]  杜旭博. 涡轮叶片孔槽结构的气膜冷却特性研究[D]: [硕士学位论文]. 天津: 中国民航大学, 2020.
[28]  Wang, B., Zeng, L. and Li, J. (2022) A Geometry Optimization of Spiral Grain Selector during Directional Solidification of Nickel‐Based Superalloy. Crystal Research and Technology, 57, Article ID: 2100257.
https://doi.org/10.1002/crat.202100257
[29]  Zhang, H. and Xu, Q. (2017) Simulation and Experimental Studies on Grain Selection and Structure Design of the Spiral Selector for Casting Single Crystal Ni-Based Superalloy. Materials, 10, Article 1236.
https://doi.org/10.3390/ma10111236
[30]  Dai, H.J., D’Souza, N. and Dong, H.B. (2011) Grain Selection in Spiral Selectors during Investment Casting of Single-Crystal Turbine Blades: Part I. Experimental Investigation. Metallurgical and Materials Transactions A, 42, 3430-3438.
https://doi.org/10.1007/s11661-011-0760-6
[31]  (2018) Novel Seed Crystal Paving Method during Cast Single Crystal Production.
https://eureka.patsnap.com/patent-CN108754598A
[32]  Zheng, M., Bian, Z., Qu, D., Zhang, S., Ren, X., Chen, W., et al. (2024) Void-induced Mechanisms in Tensile Behavior of Nickel-Based Single Crystal Superalloys. Physica Scripta, 99, Article ID: 095947.
https://doi.org/10.1088/1402-4896/ad6bff
[33]  Zhang, S. and Meng, L. (2012) Single Crystal Alloy on the Creep Behavior of Holes in Three-Dimensional Finite Element Simulation. Advanced Materials Research, 462, 61-64.
https://doi.org/10.4028/www.scientific.net/amr.462.61
[34]  Sato, Y. and Taira, T. (2022) Comprehensive Thermal Parameters of YAG Single Crystal from 160 K to 500 K. Optica Advanced Photonics Congress 2022, Barcelona, 11-15 December 2022.
https://doi.org/10.1364/assl.2022.ath1a.8
[35]  Boujnah, M., Ennaceri, H., El Kenz, A., Benyoussef, A., Chavira, E., Loulidi, M., et al. (2020) The Impact of Point Defects on the Optical and Electrical Properties of Cubic ZrO2. Journal of Computational Electronics, 19, 940-946.
https://doi.org/10.1007/s10825-020-01520-7
[36]  Wang, B., Zeng, L., Xia, M., Ren, N. and Li, J. (2022) Substrate Stimulating Technique for Ni-Based Single Crystal Superalloy Preparation during Direction Solidification. Materials & Design, 224, Article ID: 111334.
https://doi.org/10.1016/j.matdes.2022.111334
[37]  张卫国, 刘林, 赵新宝, 等. 定向凝固高温合金的研究进展[J]. 铸造, 2009, 58(1): 1-6.
[38]  Miller, J.D. (2011) Heat Extraction and Dendritic Growth during Directional Solidification of Single-Crystal Nickel-base Superalloys.
http://deepblue.lib.umich.edu/handle/2027.42/84495
[39]  王安东, 马亚硕, 施轶超, 等. 热处理对低Re镍基单晶高温合金组织的影响[J]. 热加工工艺, 2020, 49(12): 113-118.
[40]  葛丙明, 刘林, 张胜霞, 等. 抽拉速率对定向凝固叶片状DZ125高温合金微观组织的影响[J]. 金属学报, 2011, 47(11): 1470-1476.
[41]  刘刚, 刘林, 赵新宝, 等. 一种镍基单晶高温合金的高温度梯度定向凝固组织及枝晶偏析[J]. 金属学报, 2010, 46(1): 77-83.
[42]  杨初斌, 刘林, 赵新宝, 等. <001>和<011>取向DD407单晶高温合金枝晶间距和微观偏析[J]. 金属学报, 2011, 47(10): 1246-1250.
[43]  Domeij, B. and Diószegi, A. (2024) A Review of Dendritic Austenite in Cast Irons. International Journal of Metalcasting, 18, 1968-1981.
https://doi.org/10.1007/s40962-023-01239-8
[44]  Szeliga, D. (2018) Effect of Processing Parameters and Shape of Blade on the Solidification of Single-Crystal CMSX-4 Ni-Based Superalloy. Metallurgical and Materials Transactions B, 49, 2550-2570.
https://doi.org/10.1007/s11663-018-1347-z
[45]  刘晓功, 饶洋, 刘培元, 等. 温度梯度对籽晶法制备镍基单晶高温合金DD6凝固组织的影响[J]. 铸造, 2022, 71(4): 415-419.
[46]  Torfeh, M., Mirbagheri, S.M.H., Nakhodchi, S. and Aghazadeh Mohandesi, J. (2021) Experimental and Numerical Analysis of Microstructure and High-Temperature Tensile Behavior of a Directionally Solidified Superalloy. Journal of Materials Engineering and Performance, 30, 862-875.
https://doi.org/10.1007/s11665-020-05383-8
[47]  Liang, X., Bos, C., Hermans, M. and Richardson, I. (2023) Influence of the Temperature Gradient and the Pulling Velocity on Solidification Cracking Susceptibility during Welding: A Phase Field Study. Materials & Design, 235, Article ID: 112424.
https://doi.org/10.1016/j.matdes.2023.112424
[48]  Li, J., Qiao, D., Li, J., Luo, X., Peng, P., Yan, X., et al. (2024) Effects of Cooling Rate on Microstructure and Microhardness of Directionally Solidified Galvalume Alloy. China Foundry, 21, 213-220.
https://doi.org/10.1007/s41230-024-3093-y
[49]  Song, Y., Fan, J., Li, J., Yang, H., Yuan, R., Yu, J., et al. (2024) New Insights into the Optimisation of the Solution Heat Treatment Process and Properties of CMSX-4 Superalloys. Materials Science and Engineering: A, 890, Article ID: 145947.
https://doi.org/10.1016/j.msea.2023.145947
[50]  Lin, Y., Yu, W., Wang, G., Li, Z., Jiang, Y., Feng, J., et al. (2024) Exploring the Effect of Alloying Elements on the Thermoelasticity and Strength of Bcc Fe-Based Alloys by First-Principles Phonon Calculations. Journal of Materials Research and Technology, 30, 954-965.
https://doi.org/10.1016/j.jmrt.2024.03.101
[51]  Yue, X.D., Wang, R., Zhao, J.Q., Shi, Z.X., Yang, W.P. and Li, J.R. (2023) Process Optimization Method for Inhibiting TCP Precipitation in a Nickel-Based Single Crystal Superalloy with High Refractory Element Content. Journal of Physics: Conference Series, 2639, Article ID: 012018.
https://doi.org/10.1088/1742-6596/2639/1/012018
[52]  Xia, W., Zhao, X., Wang, J., Yue, Q., Cheng, Y., Kong, L., et al. (2023) New Strategy to Improve the Overall Performance of Single-Crystal Superalloys by Designing a Bimodal γ’ Precipitation Microstructure. Acta Materialia, 257, Article ID: 119200.
https://doi.org/10.1016/j.actamat.2023.119200
[53]  Wang, Y., Zhang, X., Tian, H., Hao, L., Tian, Z., Meng, J., et al. (2024) Effect of Purity on Solidification Structure and Micro-Segregation in a Nickel-Based Single Crystal Superalloy. Journal of Alloys and Compounds, 999, 174929.
https://doi.org/10.1016/j.jallcom.2024.174929
[54]  Okugawa, M., Saito, K., Yoshima, H., Sawaizumi, K., Nomoto, S., Watanabe, M., et al. (2024) Solute Segregation in a Rapidly Solidified Hastelloy-X Ni-Based Superalloy during Laser Powder Bed Fusion Investigated by Phase-Field and Computational Thermal-Fluid Dynamics Simulations. Additive Manufacturing, 84, Article ID: 104079.
https://doi.org/10.1016/j.addma.2024.104079
[55]  Zhang, C., Zhou, Y., Shen, C., Ren, W., Yuan, X., Ding, B., et al. (2024) Effects of Longitudinal Magnetic Field on Primary Dendrite Spacing and Segregation of Directionally Solidified Single Crystal Superalloy. Progress in Natural Science: Materials International, 34, 26-36.
https://doi.org/10.1016/j.pnsc.2024.01.007
[56]  Roósz, A., Rónaföldi, A., Li, Y., Mangelinck-Noël, N., Zimmermann, G., Nguyen-Thi, H., et al. (2022) Influence of Solidification Parameters on the Amount of Eutectic and Secondary Arm Spacing of Al-7wt% Si Alloy Solidified under Microgravity. Crystals, 12, Article 414.
https://doi.org/10.3390/cryst12030414
[57]  Che, J., Shi, G., Meng, S., Zou, C., Yao, D. and Cao, G. (2023) Molecular Dynamics Simulation and Experimental Study on Formation Mechanism of Micro-Hole and Cracks in Nano-Imprinting Diamond. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 238, 1374-1385.
https://doi.org/10.1177/09544054231191639
[58]  Lumper, L.A., Schaffar, G.J.K., Sommerauer, M. and Maier-Kiener, V. (2023) In-Situ Microscopy Methods for Imaging High-Temperature Microstructural Processes—Exploring the Differences and Gaining New Potentials. Materials Science and Engineering: A, 887, Article ID: 145738.
https://doi.org/10.1016/j.msea.2023.145738
[59]  Niu, H., Zheng, F., Wang, H., Liu, C., Li, R., Li, X., et al. (2022) An in Situ X-Ray Tomography Study on the Stress Corrosion Behavior of a Ni-Based Single-Crystal Superalloy. Metallurgical and Materials Transactions A, 54, 777-782.
https://doi.org/10.1007/s11661-022-06925-6
[60]  Feng, S., Liotti, E. and Grant, P.S. (2022) X-ray Imaging of Alloy Solidification: Crystal Formation, Growth, Instability and Defects. Materials, 15, Article 1319.
https://doi.org/10.3390/ma15041319
[61]  Becker, C.G., Tourret, D., Smith, D., Rodgers, B., Imhoff, S., Gibbs, J., et al. (2021) Integrating in Situ X-Ray Imaging, Energy Dispersive Spectroscopy, and Calculated Phase Diagram Analysis of Solute Segregation during Solidification of an Al-Ag Alloy. JOM, 73, 3291-3300.
https://doi.org/10.1007/s11837-021-04884-8

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133