全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Assessment of Multiple Water-Related Hazards under Changing Climate in an Urbanized Sub-Region of Yom River Basin, Thailand

DOI: 10.4236/ajcc.2024.134038, PP. 793-824

Keywords: Adaptation, Hydrological Modelling, Multi Criteria Decision Analysis, Multiple Hazard Assessment, Natural Based Solution, Spatial analysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Water-related hazards, such as river floods, flash floods and droughts, are becoming more frequent in the Upper Chao Phraya River Basin, Thailand, due to climate change and urbanization, causing significant societal, economic, and environmental damage. This study supports decision-making for nature-based solutions (NBS) to address mitigate these hazards. Using multi-criteria decision analysis, simulation modeling, and spatial analysis, the study identified precipitation and river discharges as key hazard drivers. Mapping hazard severity at various scales, the findings suggest that expanding green areas and water storage can enhance water management and reduce hazard impacts. This research offers critical insights for NBS adoption in water-related risk reduction.

References

[1]  ADRC (2019). The Nature and Man-Made Disaster.
https://www.adrc.asia/publications/databook/ORG/databook_2019/pdf/DataBook2019.pdf
[2]  Busaman, A., Chuai-Aree, S., Musikasuwan, S., & McNeil, R. (2021). Flood-Modeling and Risk Map Simulation for Mae Suai Dam-Break, Northern Thailand. Pertanika Journal of Science and Technology, 29, 663-676.
https://doi.org/10.47836/pjst.29.1.35
[3]  Cerѐ, G., Rezgui, Y., & Zhao, W. (2017). Critical Review of Existing Built Environment Resilience Frameworks: Directions for Future Research. International Journal of Disaster Risk Reduction, 25, 173-189.
https://doi.org/10.1016/j.ijdrr.2017.09.018
[4]  Champathong, A., Komori, D., Kiguchi, M., Sukhapunnaphan, T., Oki, T., & Nakaegawa, T. (2013). Future Projection of Mean River Discharge Climatology for the Chao Phraya River Basin. Hydrological Research Letters, 7, 36-41.
https://doi.org/10.3178/hrl.7.36
[5]  Chen, H., Fleskens, L., Schild, J., Moolenaar, S., Wang, F., & Ritsema, C. (2022). Impacts of Large-Scale Landscape Restoration on Spatio-Temporal Dynamics of Ecosystem Services in the Chinese Loess Plateau. Landscape Ecology, 37, 329-346.
https://doi.org/10.1007/s10980-021-01346-z
[6]  Chen, Y., Liu, R., Barrett, D., Gao, L., Zhou, M., Renzullo, L. et al. (2015). A Spatial Assessment Framework for Evaluating Flood Risk under Extreme Climates. Science of the Total Environment, 538, 512-523.
https://doi.org/10.1016/j.scitotenv.2015.08.094
[7]  Chuenchooklin, S., Taweepong, S., & Pangnakorn, U. (2015). Rainfall-Runoff Models and Flood Mapping in a Catchment of the Upper Nan Basin, Thailand. Journal of Water Resource and Hydraulic Engineering, 4, 293-302.
https://doi.org/10.5963/jwrhe0403012
[8]  Clifton, C. F., Day, K. T., Luce, C. H., Grant, G. E., Safeeq, M., Halofsky, J. E. et al. (2018). Effects of Climate Change on Hydrology and Water Resources in the Blue Mountains, Oregon, Usa. Climate Services, 10, 9-19.
https://doi.org/10.1016/j.cliser.2018.03.001
[9]  Cohen, J. P., Field, R., Tafuri, A. N., & Ports, M. A. (2012). Cost Comparison of Conventional Gray Combined Sewer Overflow Control Infrastructure versus a Green/Gray Combination. Journal of Irrigation and Drainage Engineering, 138, 534-540.
https://doi.org/10.1061/(asce)ir.1943-4774.0000432
[10]  Dang, N. A., Benavidez, R., Tomscha, S. A., Nguyen, H., Tran, D. D., Nguyen, D. T. H. et al. (2021). Ecosystem Service Modelling to Support Nature-Based Flood Water Management in the Vietnamese Mekong River Delta. Sustainability, 13, Article No. 13549.
https://doi.org/10.3390/su132413549
[11]  Dau, Q. Van, Kuntiyawichai, K., & Suryadi, F. X. (2018). Drought Severity Assessment in the Lower Nam Phong River Basin, Thailand. Songklanakarin Journal of Science and Technology, 40, 985-992.
https://doi.org/10.14456/sjst-psu.2018.99
[12]  Debele, S. E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S. B., Leo, L. S. et al. (2019). Nature-Based Solutions for Hydro-Meteorological Hazards: Revised Concepts, Classification Schemes and Databases. Environmental Research, 179, Article ID: 108799.
https://doi.org/10.1016/j.envres.2019.108799
[13]  Department of Disaster Prevention and Mitigation (DPMM), Sukhothai Office (2019). Chapter 1 Natural Disaster Event in Sukhothai. Disaster Mitigation and Prevention Plan for Sukhothai Province (in Thai) (pp. 1-10).
[14]  Department of Public Works and Town & Country Planning (DPT), Sukhothai Office, (2019). Land Use Planning and Building Control. Chapter 4 General Condition of the Comprehensive City Plan of Sukhothai Province (in Thai) (pp. 1-265).
[15]  Depietri, Y., & McPhearson, T. (2017). Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change Adaptation and Risk Reduction. In N. Kabisch, H. Korn, J. Stadler, & A. Bonn (Eds.), Theory and Practice of Urban Sustainability Transitions (pp. 91-109). Springer International Publishing.
https://doi.org/10.1007/978-3-319-56091-5_6
[16]  Environmental Technology (2014). What Are the Different Types of Flood?
https://www.envirotech-online.com/news/water-wastewater/9/breaking-news/what-are-the-different-types-of-floods/31906
[17]  European Environmental Agency (2015). Exploring Nature-Based Solutions: The Role of Green Infrastructure in Mitigating the Impacts of Weather-and Climate Change-Related Natural Hazards.
http://doi.org/10.13140/RG.2.2.11273.24169
[18]  Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., & Vandewoestijne, S. (2017). Nature-based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. Environmental Research, 159, 509-518.
https://doi.org/10.1016/j.envres.2017.08.032
[19]  Ferreira, C. S. S., Potočki, K., Kapović-Solomun, M., & Kalantari, Z. (2021). Nature-Based Solutions for Flood Mitigation and Resilience in Urban Areas. In C. S. S. Ferreira, Z. Kalantari, T. Hartmann, & P. Pereira (Eds.), Nature-Based Solutions for Flood Mitigation (pp. 59-78). Springer International Publishing.
https://doi.org/10.1007/698_2021_758
[20]  Gill, J. C., & Malamud, B. D. (2017). Anthropogenic Processes, Natural Hazards, and Interactions in a Multi-Hazard Framework. Earth-Science Reviews, 166, 246-269.
https://doi.org/10.1016/j.earscirev.2017.01.002
[21]  Hamlet, A. F., Elsner, M. M., Mauger, G. S., Lee, S., Tohver, I., & Norheim, R. A. (2013). An Overview of the Columbia Basin Climate Change Scenarios Project: Approach, Methods, and Summary of Key Results. Atmosphere-Ocean, 51, 392-415.
https://doi.org/10.1080/07055900.2013.819555
[22]  Horváthová, E. (2019). An Assessment of Costs and Benefits of Nature-Based Solutions in Cities.
https://www.lifetreecheck.eu/getattachment/90182157-9f6d-42dd-8293-4edc8f90e7ca/An-assessment-of-costs-and-benefits-of-nature-based-solutions-in-cities
[23]  Hydraulic Engineer Center (2019). Hydrologic Modeling System.
https://www.hec.usace.army.mil/software/hec-hms/
[24]  Hydro and Agro Informatics Institute (2012). Data Collection and Data Analysis for the Development of Databases of 25 River Basins and Flood and Drought Modelling: Chao Phraya River Basin (in Thai) (pp. 1-90).
[25]  Ilieva, L., McQuistan, C., van Breda, A., Rodriguez, A.V., Guevara, O., Cordero, D., Podvin, K. & Renaud, F. (2018). Adopting Nature-Based Solutions for Flood Risk Reduction in Latin America. Working Paper.
https://reliefweb.int/sites/reliefweb.int/files/resources/22311672018111511122.pdf
[26]  Jamrussri, S., & Toda, Y. (2017). Simulating Past Severe Flood Events to Evaluate the Effectiveness of Nonstructural Flood Countermeasures in the Upper Chao Phraya River Basin, Thailand. Journal of Hydrology: Regional Studies, 10, 82-94.
https://doi.org/10.1016/j.ejrh.2017.02.001
[27]  Kalantari, Z., Ferreira, C. S. S., Keesstra, S., & Destouni, G. (2018). Nature-Based Solutions for Flood-Drought Risk Mitigation in Vulnerable Urbanizing Parts of East-Africa. Current Opinion in Environmental Science & Health, 5, 73-78.
https://doi.org/10.1016/j.coesh.2018.06.003
[28]  Kanbua, W., & Khetchaturat, C. (2009). Decision Support System for Flash Flood Warning Management Using Artificial Neural Network.
http://www.marine.tmd.go.th/DSS-PAPER.pdf
[29]  Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of Flood Hazard Areas at a Regional Scale Using an Index-Based Approach and Analytical Hierarchy Process: Application in Rhodope-Evros Region, Greece. Science of the Total Environment, 538, 555-563.
https://doi.org/10.1016/j.scitotenv.2015.08.055
[30]  Khaspuria, G., Ranjan, A., Sahil, Soni, P., & Dadhich, K. (2024). Natural Disaster Mitigation Strategies: A Comprehensive Review. Journal of Scientific Research and Reports, 30, 20-34.
https://doi.org/10.9734/jsrr/2024/v30i82221
[31]  Komori, D., Nakamura, S., Kiguchi, M., Nishijima, A., Yamazaki, D., Suzuki, S. et al. (2012). Characteristics of the 2011 Chao Phraya River Flood in Central Thailand. Hydrological Research Letters, 6, 41-46.
https://doi.org/10.3178/hrl.6.41
[32]  Krinner, G. et al. (2013). Long-Term Climate Change: Projections, Commitments and Irreversibility. Climate Change 2013 the Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 1029-1136).
[33]  Lafortezza, R., Chen, J., van den Bosch, C. K., & Randrup, T. B. (2018). Nature-Based Solutions for Resilient Landscapes and Cities. Environmental Research, 165, 431-441.
https://doi.org/10.1016/j.envres.2017.11.038
[34]  Land Development Department (LDD). (2017). Historical Land Use Map and Land Use Type for Thailand [Shapefile].
https://dinonline.ldd.go.th
[35]  Limsakul, A., & Singhruck, P. (2016). Long-Term Trends and Variability of Total and Extreme Precipitation in Thailand. Atmospheric Research, 169, 301-317.
https://doi.org/10.1016/j.atmosres.2015.10.015
[36]  Liu, B. (2011). Modelling Multi-Hazard Risk Assessment in the Yangtze River Delta Region: A Case Study on Human Life. Published Doctoral Dissertation, The University of Leeds.
[37]  Liu, B., Siu, Yim, L., & Mitchell, G. (2016). Hazard Interaction Analysis for Multi-Hazard Risk Assessment: A Systematic Classification Based on Hazard-Forming Environment. Natural Hazards and Earth System Sciences, 16, 629-642.
https://doi:10.5194/nhess-16-629-2016
[38]  Marengo, J. A., Alves, L. M., Ambrizzi, T., Young, A., Barreto, N. J. C., & Ramos, A. M. (2020). Trends in Extreme Rainfall and Hydrogeometeorological Disasters in the Metropolitan Area of São Paulo: A Review. Annals of the New York Academy of Sciences, 1472, 5-20.
https://doi.org/10.1111/nyas.14307
[39]  Muto, Y., & Yokokawa, R. (2022). Wetland Paddy Fields as Green Infrastructure against Flood. In F. Nakamura (Ed.), Green Infrastructure and Climate Change Adaptation: Function, Implementation and Governance (pp. 135-159). Springer Nature.
https://doi.org/10.1007/978-981-16-6791-6_9
[40]  National Geographic Society (2019). Drought.
https://www.nationalgeographic.org/encyclopedia/drought/
[41]  National Infrastructure Commission (2017). The Impact of the Environment and Climate Change on Future Infrastructure Supply and Demand (pp. 1-36).
[42]  Palchaudhuri, M., & Biswas, S. (2016). Application of AHP with GIS in Drought Risk Assessment for Puruliya District, India. Natural Hazards, 84, 1905-1920.
https://doi.org/10.1007/s11069-016-2526-3
[43]  Penny, J., Alves, P. B. R., De-Silva, Y., Chen, A. S., Djordjević, S., Shrestha, S. et al. (2023). Analysis of Potential Nature-Based Solutions for the Mun River Basin, Thailand. Water Science and Technology, 87, 1496-1514.
https://doi.org/10.2166/wst.2023.050
[44]  Petchprayoon, P., Blanken, P. D., Ekkawatpanit, C., & Hussein, K. (2010). Hydrological Impacts of Land Use/Land Cover Change in a Large River Basin in Central-Northern Thailand. International Journal of Climatology, 30, 1917-1930.
https://doi.org/10.1002/joc.2131
[45]  Poaponsakorn, N., Meethom, P., & Pantakua, K. (2015). The Impact of the 2011 Floods, and Flood Management on Thai Households. In D. P. Aldrich, S. Oum, & Y. Sawada (Eds.), Resilience and Recovery in Asian Disasters (pp. 75-104). Springer Japan.
https://doi.org/10.1007/978-4-431-55022-8_5
[46]  Pudar, R., Plavšić, J., & Todorović, A. (2020). Evaluation of Green and Grey Flood Mitigation Measures in Rural Watersheds. Applied Sciences, 10, Article No. 6913.
https://doi.org/10.3390/app10196913
[47]  Putthividhya, A., & Jomvoravong, A. (2016). Flood Frequency Analysis for Extreme Events under Climate Change in Yom River Basin of Thailand. In 2nd World Irrigation Forum (WIF2) (pp. 1-10). International Commission on Irrigation and Drainage.
[48]  Qi, Y., Chan, F. K. S., Thorne, C., Donnell, E. O., Quagliolo, C., Comino, E., Pezzoli, A., Li, L., Griffiths, J., Sang, Y., & Feng, M. (2021). Correction: Yunfei, Q., et al. Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water 2020, 12, 2788. Water, 13, Article No. 900.
[49]  Qi, Y., Chan, F. K. S., Thorne, C., O’Donnell, E., Quagliolo, C., Comino, E. et al. (2020). Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water, 12, Article No. 2788.
https://doi.org/10.3390/w12102788
[50]  Quang Tri, D., Tho Dat, T., & Duc Truong, D. (2019). Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam. Hydrology, 6, Article No. 49.
https://doi.org/10.3390/hydrology6020049
[51]  Rangsiwanichpong, P., Kazama, S., & Ekkawatpanit, E. (2016). Assessment of Flood and Drought Using Ocean Indices in the Chao Phraya River Basin, Thailand. In The 7th International Conference on Water Resources and Environment Research; ICWRER2016 (pp. 1-6). Hydrological Research Letters.
[52]  Royal Irrigation Department (RID), Sukhothai Office (2019). Report on the Master Plan for the Development of the Sukhothai Provincial River Basin (pp. 1-32). Royal Irrigation Department, Sukhothai Office (in Thai).
[53]  Royal Irrigation Department (RID). (2017). Historical River Discharge Data for the Chao Phraya River Basin [Data Set]. Hydrology Division, Royal Irrigation Department.
[54]  Rubinato, M., Nichols, A., Peng, Y., Zhang, J., Lashford, C., Cai, Y. et al. (2019). Urban and River Flooding: Comparison of Flood Risk Management Approaches in the UK and China and an Assessment of Future Knowledge Needs. Water Science and Engineering, 12, 274-283.
https://doi.org/10.1016/j.wse.2019.12.004
[55]  Saaty, T. L. (1977) A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology, 15, 234-281.
http://dx.doi.org/10.1016/0022-2496(77)90033-5
[56]  Saaty, T. L. (1980). The Analytic Hierarchical Process. McGraw-Hill. New York.
[57]  Salami, R. O., Von Meding, J. K., & Giggins, H. (2017). Urban Settlements’ Vulnerability to Flood Risks in African Cities: A Conceptual Framework. Jàmbá: Journal of Disaster Risk Studies, 9, a370.
https://doi.org/10.4102/jamba.v9i1.370
[58]  Sawatpru, K., & Konyai, S. (2016). Hydrological Drought Frequency Analysis of the Yom River, Thailand. KKU Engineering Journal, 43, 100-107.
https://10.14456/kkuenj.2016.16
[59]  Scharffenberg, F. (2018). Hydrologic Modeling System User’s Manual. Hydrologic Engineering Center.
[60]  Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., & Turner, B. (2020). Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. Philosophical Transactions of the Royal Society B: Biological Sciences, 375, Article ID: 20190120.
https://doi.org/10.1098/rstb.2019.0120
[61]  Seejata, K., Yodying, A., Wongthadam, T., Mahavik, N., & Tantanee, S. (2018). Assessment of Flood Hazard Areas Using Analytical Hierarchy Process over the Lower Yom Basin, Sukhothai Province. Procedia Engineering, 212, 340-347.
https://doi.org/10.1016/j.proeng.2018.01.044
[62]  Serra-Llobet, A., Jähnig, S. C., Geist, J., Kondolf, G. M., Damm, C., Scholz, M. et al. (2022). Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management from California and Germany. Frontiers in Environmental Science, 9, Article ID: 778568.
https://doi.org/10.3389/fenvs.2021.778568
[63]  Shadmehri Toosi, A., Calbimonte, G. H., Nouri, H., & Alaghmand, S. (2019). River Basin-Scale Flood Hazard Assessment Using a Modified Multi-Criteria Decision Analysis Approach: A Case Study. Journal of Hydrology, 574, 660-671.
https://doi.org/10.1016/j.jhydrol.2019.04.072
[64]  Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-Hazard Assessment Modeling via Multi-Criteria Analysis and GIS: A Case Study. Environmental Earth Sciences, 78, 1-21.
https://doi.org/10.1007/s12665-018-8003-4
[65]  Soytong, P., Janchidfa, K., & Chayhard, S. (2023). Analysis of Water Resources and Water Potentials under Conditions of Land Use-Urban-Industrial-Agricultural Change and Climate Change in the Eastern Region of Thailand. International Journal of Agricultural Technology, 19, 733-754.
[66]  Stefanidis, S., & Stathis, D. (2013). Assessment of Flood Hazard Based on Natural and Anthropogenic Factors Using Analytic Hierarchy Process (AHP). Natural Hazards, 68, 569-585.
https://doi.org/10.1007/s11069-013-0639-5
[67]  Swiss NGO DRR Platform (2018). From Grey to Green: Natural-Based Solutions for Disaster Risk Reduction and Resilience Building.
https://www.shareweb.ch/site/DRR/Documents/Types%20of%20activity/Community-based%20DRR/DRR-Platform-NBS-F2F_Flyer_4p_28032018.pdf
[68]  Tate, E. (1999). Introduction to HEC-RAS.
http://www.ce.utexas.edu/prof/maidment/grad/tate/research/RASExercise/webfiles/hecras.html
[69]  Thai Meteorological Department (TMD). (2017). Historical Rainfall Data for Thailand [Data set]. Climate Center. Thai Meteorological Department.
[70]  Thieme, M., Birnie-Gauvin, K., Opperman, J. J., Franklin, P. A., Richter, H., Baumgartner, L. et al. (2023). Measures to Safeguard and Restore River Connectivity. Environmental Reviews, 32, 366-386.
https://doi.org/10.1139/er-2023-0019
[71]  Tingsanchali, T., & Keokhumcheng, Y. (2019) A Method for Evaluating Flood Hazard and Flood Risk of East Bangkok Plain, Thailand. Engineering Sustainability, 172, 385-392.
[72]  Tiwari, A. (2019). Urban Risk Assessment Based on Integrating Natural and Anthropo-genic Factors Using Spatial Multi-Criteria Decision Approach: A Case Study of Flood and Seismic Hazards in Kathmandu Valley. Unpublished Master’s Thesis, Asian Institute of Technology, Pathum Thani, Thailand.
[73]  Trisurat, Y., Shirakawa, H., & Johnston, J. M. (2019). Land-Use/Land-Cover Change from Socio-Economic Drivers and Their Impact on Biodiversity in Nan Province, Thailand. Sustainability, 11, Article No. 649.
https://doi.org/10.3390/su11030649
[74]  U.S. Geological Survey (USGS). (2017). Shuttle Radar Topography Mission (SRTM) Digital Elevation Model for Thailand [Data set]. NASA Earth Data.
https://earthexplorer.usgs.gov/
[75]  UN Environment (2016). Nature-Based Solutions for Water Management under Climate Change (pp. 1-26).
[76]  UN Environment-DHI, UN Environment & IUCN (2018). Nature-Based Solutions for Water Management: A Primer.
https://wedocs.unep.org/bitstream/handle/20.500.11822/32058/NBSW.pdf?sequence=1&isAllowed=y
[77]  Wallemacq, P., UNISDR, & CRED (2018). Economic Losses, Poverty and Disasters, 1998-2017.
http://doi.org/10.13140/RG.2.2.35610.08643
[78]  Xu, J., Wang, Z., Shen, F., Ouyang, C., & Tu, Y. (2016). Natural Disasters and Social Conflict: A Systematic Literature Review. International Journal of Disaster Risk Reduction, 17, 38-48.
https://doi.org/10.1016/j.ijdrr.2016.04.001
[79]  Yang, S., Zhao, B., Yang, D., Wang, T., Yang, Y., Ma, T. et al. (2023). Future Changes in Water Resources, Floods and Droughts under the Joint Impact of Climate and Land-Use Changes in the Chao Phraya Basin, Thailand. Journal of Hydrology, 620, Article ID: 129454.
https://doi.org/10.1016/j.jhydrol.2023.129454
[80]  Yu, Y., Zhao, W., Martinez-Murillo, J. F., & Pereira, P. (2020). Loess Plateau: From Degradation to Restoration. Science of the Total Environment, 738, Article ID: 140206.
https://doi.org/10.1016/j.scitotenv.2020.140206
[81]  Zenkoji, S., Oda, S., Tebakari, T., & Archevarahuprok, B. (2019). Spatial Characteristics of Flooded Areas in the Mun and Chi River Basins in Northeastern Thailand. Journal of Disaster Research, 14, 1337-1345.
https://doi.org/10.20965/jdr.2019.p1337
[82]  Zhang, Z., Liu, J., & Huang, J. (2020). Hydrologic Impacts of Cascade Dams in a Small Headwater Watershed under Climate Variability. Journal of Hydrology, 590, Article ID: 125426.
https://doi.org/10.1016/j.jhydrol.2020.125426

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133