Water-related hazards, such as river floods, flash floods and droughts, are becoming more frequent in the Upper Chao Phraya River Basin, Thailand, due to climate change and urbanization, causing significant societal, economic, and environmental damage. This study supports decision-making for nature-based solutions (NBS) to address mitigate these hazards. Using multi-criteria decision analysis, simulation modeling, and spatial analysis, the study identified precipitation and river discharges as key hazard drivers. Mapping hazard severity at various scales, the findings suggest that expanding green areas and water storage can enhance water management and reduce hazard impacts. This research offers critical insights for NBS adoption in water-related risk reduction.
Busaman, A., Chuai-Aree, S., Musikasuwan, S., & McNeil, R. (2021). Flood-Modeling and Risk Map Simulation for Mae Suai Dam-Break, Northern Thailand. PertanikaJournalofScienceandTechnology,29, 663-676. https://doi.org/10.47836/pjst.29.1.35
[3]
Cerѐ, G., Rezgui, Y., & Zhao, W. (2017). Critical Review of Existing Built Environment Resilience Frameworks: Directions for Future Research. InternationalJournalofDisasterRiskReduction,25, 173-189. https://doi.org/10.1016/j.ijdrr.2017.09.018
[4]
Champathong, A., Komori, D., Kiguchi, M., Sukhapunnaphan, T., Oki, T., & Nakaegawa, T. (2013). Future Projection of Mean River Discharge Climatology for the Chao Phraya River Basin. HydrologicalResearchLetters,7, 36-41. https://doi.org/10.3178/hrl.7.36
[5]
Chen, H., Fleskens, L., Schild, J., Moolenaar, S., Wang, F., & Ritsema, C. (2022). Impacts of Large-Scale Landscape Restoration on Spatio-Temporal Dynamics of Ecosystem Services in the Chinese Loess Plateau. LandscapeEcology,37, 329-346. https://doi.org/10.1007/s10980-021-01346-z
[6]
Chen, Y., Liu, R., Barrett, D., Gao, L., Zhou, M., Renzullo, L. et al. (2015). A Spatial Assessment Framework for Evaluating Flood Risk under Extreme Climates. ScienceoftheTotalEnvironment,538, 512-523. https://doi.org/10.1016/j.scitotenv.2015.08.094
[7]
Chuenchooklin, S., Taweepong, S., & Pangnakorn, U. (2015). Rainfall-Runoff Models and Flood Mapping in a Catchment of the Upper Nan Basin, Thailand. JournalofWaterResourceandHydraulicEngineering,4, 293-302. https://doi.org/10.5963/jwrhe0403012
[8]
Clifton, C. F., Day, K. T., Luce, C. H., Grant, G. E., Safeeq, M., Halofsky, J. E. et al. (2018). Effects of Climate Change on Hydrology and Water Resources in the Blue Mountains, Oregon, Usa. ClimateServices,10, 9-19. https://doi.org/10.1016/j.cliser.2018.03.001
[9]
Cohen, J. P., Field, R., Tafuri, A. N., & Ports, M. A. (2012). Cost Comparison of Conventional Gray Combined Sewer Overflow Control Infrastructure versus a Green/Gray Combination. JournalofIrrigationandDrainageEngineering,138, 534-540. https://doi.org/10.1061/(asce)ir.1943-4774.0000432
[10]
Dang, N. A., Benavidez, R., Tomscha, S. A., Nguyen, H., Tran, D. D., Nguyen, D. T. H. et al. (2021). Ecosystem Service Modelling to Support Nature-Based Flood Water Management in the Vietnamese Mekong River Delta. Sustainability,13, Article No. 13549. https://doi.org/10.3390/su132413549
[11]
Dau, Q. Van, Kuntiyawichai, K., & Suryadi, F. X. (2018). Drought Severity Assessment in the Lower Nam Phong River Basin, Thailand. SongklanakarinJournalofScienceandTechnology,40, 985-992. https://doi.org/10.14456/sjst-psu.2018.99
[12]
Debele, S. E., Kumar, P., Sahani, J., Marti-Cardona, B., Mickovski, S. B., Leo, L. S. et al. (2019). Nature-Based Solutions for Hydro-Meteorological Hazards: Revised Concepts, Classification Schemes and Databases. EnvironmentalResearch,179, Article ID: 108799. https://doi.org/10.1016/j.envres.2019.108799
[13]
Department of Disaster Prevention and Mitigation (DPMM), Sukhothai Office (2019). Chapter1Natural Disaster Event inSukhothai.DisasterMitigationandPrevention Plan forSukhothai Province (inThai) (pp. 1-10).
[14]
Department of Public Works and Town & Country Planning (DPT), Sukhothai Office, (2019). Land Use Planning and Building Control.Chapter4General Condition ofthe Comprehensive City PlanofSukhothai Province (inThai) (pp. 1-265).
[15]
Depietri, Y., & McPhearson, T. (2017). Integrating the Grey, Green, and Blue in Cities: Nature-Based Solutions for Climate Change Adaptation and Risk Reduction. In N. Kabisch, H. Korn, J. Stadler, & A. Bonn (Eds.), TheoryandPracticeofUrbanSustainabilityTransitions (pp. 91-109). Springer International Publishing. https://doi.org/10.1007/978-3-319-56091-5_6
[16]
Environmental Technology (2014). What Are the Different Types of Flood? https://www.envirotech-online.com/news/water-wastewater/9/breaking-news/what-are-the-different-types-of-floods/31906
[17]
European Environmental Agency (2015). ExploringNature-Based Solutions:TheRoleofGreenInfrastructureinMitigatingtheImpactsofWeather-andClimateChange-RelatedNaturalHazards. http://doi.org/10.13140/RG.2.2.11273.24169
[18]
Faivre, N., Fritz, M., Freitas, T., de Boissezon, B., & Vandewoestijne, S. (2017). Nature-based Solutions in the EU: Innovating with Nature to Address Social, Economic and Environmental Challenges. EnvironmentalResearch,159, 509-518. https://doi.org/10.1016/j.envres.2017.08.032
[19]
Ferreira, C. S. S., Potočki, K., Kapović-Solomun, M., & Kalantari, Z. (2021). Nature-Based Solutions for Flood Mitigation and Resilience in Urban Areas. In C. S. S. Ferreira, Z. Kalantari, T. Hartmann, & P. Pereira (Eds.), Nature-Based Solutions for Flood Mitigation (pp. 59-78). Springer International Publishing. https://doi.org/10.1007/698_2021_758
[20]
Gill, J. C., & Malamud, B. D. (2017). Anthropogenic Processes, Natural Hazards, and Interactions in a Multi-Hazard Framework. Earth-ScienceReviews,166, 246-269. https://doi.org/10.1016/j.earscirev.2017.01.002
[21]
Hamlet, A. F., Elsner, M. M., Mauger, G. S., Lee, S., Tohver, I., & Norheim, R. A. (2013). An Overview of the Columbia Basin Climate Change Scenarios Project: Approach, Methods, and Summary of Key Results. Atmosphere-Ocean,51, 392-415. https://doi.org/10.1080/07055900.2013.819555
[22]
Horváthová, E. (2019). An Assessment of Costs and Benefits of Nature-Based Solutionsin Cities. https://www.lifetreecheck.eu/getattachment/90182157-9f6d-42dd-8293-4edc8f90e7ca/An-assessment-of-costs-and-benefits-of-nature-based-solutions-in-cities
[23]
Hydraulic Engineer Center (2019). HydrologicModelingSystem. https://www.hec.usace.army.mil/software/hec-hms/
[24]
Hydro and Agro Informatics Institute (2012). Data Collectionand Data Analysis forthe Development of Databases of25 River Basinsand Flood and Drought Modelling:ChaoPhraya River Basin (inThai) (pp. 1-90).
[25]
Ilieva, L., McQuistan, C., van Breda, A., Rodriguez, A.V., Guevara, O., Cordero, D., Podvin, K. & Renaud, F. (2018). Adopting Nature-Based Solutionsfor Flood Risk ReductioninLatinAmerica. Working Paper. https://reliefweb.int/sites/reliefweb.int/files/resources/22311672018111511122.pdf
[26]
Jamrussri, S., & Toda, Y. (2017). Simulating Past Severe Flood Events to Evaluate the Effectiveness of Nonstructural Flood Countermeasures in the Upper Chao Phraya River Basin, Thailand. JournalofHydrology:RegionalStudies,10, 82-94. https://doi.org/10.1016/j.ejrh.2017.02.001
[27]
Kalantari, Z., Ferreira, C. S. S., Keesstra, S., & Destouni, G. (2018). Nature-Based Solutions for Flood-Drought Risk Mitigation in Vulnerable Urbanizing Parts of East-Africa. CurrentOpinioninEnvironmentalScience&Health,5, 73-78. https://doi.org/10.1016/j.coesh.2018.06.003
[28]
Kanbua, W., & Khetchaturat, C. (2009). Decision Support System for Flash Flood Warning Management Using Artificial Neural Network. http://www.marine.tmd.go.th/DSS-PAPER.pdf
[29]
Kazakis, N., Kougias, I., & Patsialis, T. (2015). Assessment of Flood Hazard Areas at a Regional Scale Using an Index-Based Approach and Analytical Hierarchy Process: Application in Rhodope-Evros Region, Greece. ScienceoftheTotalEnvironment,538, 555-563. https://doi.org/10.1016/j.scitotenv.2015.08.055
[30]
Khaspuria, G., Ranjan, A., Sahil, Soni, P., & Dadhich, K. (2024). Natural Disaster Mitigation Strategies: A Comprehensive Review. JournalofScientificResearchandReports,30, 20-34. https://doi.org/10.9734/jsrr/2024/v30i82221
[31]
Komori, D., Nakamura, S., Kiguchi, M., Nishijima, A., Yamazaki, D., Suzuki, S. et al. (2012). Characteristics of the 2011 Chao Phraya River Flood in Central Thailand. HydrologicalResearchLetters,6, 41-46. https://doi.org/10.3178/hrl.6.41
[32]
Krinner, G. et al. (2013). Long-Term Climate Change:Projections, Commitments and Irreversibility.ClimateChange2013thePhysicalScienceBasis:WorkingGroupIContributiontotheFifthAssessmentReportoftheIntergovernmentalPanelonClimateChange (pp. 1029-1136).
[33]
Lafortezza, R., Chen, J., van den Bosch, C. K., & Randrup, T. B. (2018). Nature-Based Solutions for Resilient Landscapes and Cities. EnvironmentalResearch,165, 431-441. https://doi.org/10.1016/j.envres.2017.11.038
[34]
Land Development Department (LDD). (2017). Historical Land Use Map and Land Use Type for Thailand [Shapefile]. https://dinonline.ldd.go.th
[35]
Limsakul, A., & Singhruck, P. (2016). Long-Term Trends and Variability of Total and Extreme Precipitation in Thailand. AtmosphericResearch,169, 301-317. https://doi.org/10.1016/j.atmosres.2015.10.015
[36]
Liu, B. (2011). Modelling Multi-Hazard RiskAssessmentintheYangtzeRiverDeltaRegion:ACaseStudyonHumanLife. Published Doctoral Dissertation, The University of Leeds.
[37]
Liu, B., Siu, Yim, L., & Mitchell, G. (2016). Hazard Interaction Analysis for Multi-Hazard Risk Assessment: A Systematic Classification Based on Hazard-Forming Environment. Natural Hazards and Earth System Sciences, 16, 629-642. https://doi:10.5194/nhess-16-629-2016
[38]
Marengo, J. A., Alves, L. M., Ambrizzi, T., Young, A., Barreto, N. J. C., & Ramos, A. M. (2020). Trends in Extreme Rainfall and Hydrogeometeorological Disasters in the Metropolitan Area of São Paulo: A Review. AnnalsoftheNewYorkAcademyofSciences,1472, 5-20. https://doi.org/10.1111/nyas.14307
[39]
Muto, Y., & Yokokawa, R. (2022). Wetland Paddy Fields as Green Infrastructure against Flood. In F. Nakamura (Ed.), Green Infrastructure and Climate Change Adaptation: Function, Implementation and Governance (pp. 135-159). Springer Nature. https://doi.org/10.1007/978-981-16-6791-6_9
[40]
National Geographic Society (2019). Drought. https://www.nationalgeographic.org/encyclopedia/drought/
[41]
National Infrastructure Commission (2017). The Impact of the Environment and Climate Change on Future Infrastructure Supply and Demand (pp. 1-36).
[42]
Palchaudhuri, M., & Biswas, S. (2016). Application of AHP with GIS in Drought Risk Assessment for Puruliya District, India. Natural Hazards, 84, 1905-1920. https://doi.org/10.1007/s11069-016-2526-3
[43]
Penny, J., Alves, P. B. R., De-Silva, Y., Chen, A. S., Djordjević, S., Shrestha, S. et al. (2023). Analysis of Potential Nature-Based Solutions for the Mun River Basin, Thailand. WaterScienceandTechnology,87, 1496-1514. https://doi.org/10.2166/wst.2023.050
[44]
Petchprayoon, P., Blanken, P. D., Ekkawatpanit, C., & Hussein, K. (2010). Hydrological Impacts of Land Use/Land Cover Change in a Large River Basin in Central-Northern Thailand. InternationalJournalofClimatology,30, 1917-1930. https://doi.org/10.1002/joc.2131
[45]
Poaponsakorn, N., Meethom, P., & Pantakua, K. (2015). The Impact of the 2011 Floods, and Flood Management on Thai Households. In D. P. Aldrich, S. Oum, & Y. Sawada (Eds.), ResilienceandRecoveryinAsianDisasters (pp. 75-104). Springer Japan. https://doi.org/10.1007/978-4-431-55022-8_5
[46]
Pudar, R., Plavšić, J., & Todorović, A. (2020). Evaluation of Green and Grey Flood Mitigation Measures in Rural Watersheds. AppliedSciences,10, Article No. 6913. https://doi.org/10.3390/app10196913
[47]
Putthividhya, A., & Jomvoravong, A. (2016). Flood Frequency Analysis for Extreme Events under Climate Change in Yom River Basin of Thailand. In 2nd World Irrigation Forum (WIF2) (pp. 1-10). International Commission on Irrigation and Drainage.
[48]
Qi, Y., Chan, F. K. S., Thorne, C., Donnell, E. O., Quagliolo, C., Comino, E., Pezzoli, A., Li, L., Griffiths, J., Sang, Y., & Feng, M. (2021). Correction: Yunfei, Q., et al. Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water 2020, 12, 2788. Water, 13, Article No. 900.
[49]
Qi, Y., Chan, F. K. S., Thorne, C., O’Donnell, E., Quagliolo, C., Comino, E. et al. (2020). Addressing Challenges of Urban Water Management in Chinese Sponge Cities via Nature-Based Solutions. Water,12, Article No. 2788. https://doi.org/10.3390/w12102788
[50]
Quang Tri, D., Tho Dat, T., & Duc Truong, D. (2019). Application of Meteorological and Hydrological Drought Indices to Establish Drought Classification Maps of the Ba River Basin in Vietnam. Hydrology,6, Article No. 49. https://doi.org/10.3390/hydrology6020049
[51]
Rangsiwanichpong, P., Kazama, S., & Ekkawatpanit, E. (2016). Assessment of Flood and Drought Using Ocean Indices in the Chao Phraya River Basin, Thailand. In The 7th International Conference on Water Resources and Environment Research; ICWRER2016 (pp. 1-6). Hydrological Research Letters.
[52]
Royal Irrigation Department (RID), Sukhothai Office (2019). Report on the Master Plan for the Development of the Sukhothai Provincial River Basin (pp. 1-32). Royal Irrigation Department, Sukhothai Office (in Thai).
[53]
Royal Irrigation Department (RID). (2017). Historical River Discharge Data for the Chao Phraya River Basin [Data Set]. Hydrology Division, Royal Irrigation Department.
[54]
Rubinato, M., Nichols, A., Peng, Y., Zhang, J., Lashford, C., Cai, Y. et al. (2019). Urban and River Flooding: Comparison of Flood Risk Management Approaches in the UK and China and an Assessment of Future Knowledge Needs. WaterScienceandEngineering,12, 274-283. https://doi.org/10.1016/j.wse.2019.12.004
[55]
Saaty, T. L. (1977) A Scaling Method for Priorities in Hierarchical Structures. Journal of Mathematical Psychology, 15, 234-281. http://dx.doi.org/10.1016/0022-2496(77)90033-5
[56]
Saaty, T. L. (1980). The Analytic Hierarchical Process. McGraw-Hill. New York.
[57]
Salami, R. O., Von Meding, J. K., & Giggins, H. (2017). Urban Settlements’ Vulnerability to Flood Risks in African Cities: A Conceptual Framework. Jàmbá:JournalofDisasterRiskStudies,9, a370. https://doi.org/10.4102/jamba.v9i1.370
[58]
Sawatpru, K., & Konyai, S. (2016). Hydrological Drought Frequency Analysis of the Yom River, Thailand. KKU Engineering Journal, 43, 100-107. https://10.14456/kkuenj.2016.16
[59]
Scharffenberg, F. (2018). Hydrologic Modeling System User’s Manual. Hydrologic Engineering Center.
[60]
Seddon, N., Chausson, A., Berry, P., Girardin, C. A. J., Smith, A., & Turner, B. (2020). Understanding the Value and Limits of Nature-Based Solutions to Climate Change and Other Global Challenges. PhilosophicalTransactionsoftheRoyalSocietyB:BiologicalSciences,375, Article ID: 20190120. https://doi.org/10.1098/rstb.2019.0120
[61]
Seejata, K., Yodying, A., Wongthadam, T., Mahavik, N., & Tantanee, S. (2018). Assessment of Flood Hazard Areas Using Analytical Hierarchy Process over the Lower Yom Basin, Sukhothai Province. Procedia Engineering, 212, 340-347. https://doi.org/10.1016/j.proeng.2018.01.044
[62]
Serra-Llobet, A., Jähnig, S. C., Geist, J., Kondolf, G. M., Damm, C., Scholz, M. et al. (2022). Restoring Rivers and Floodplains for Habitat and Flood Risk Reduction: Experiences in Multi-Benefit Floodplain Management from California and Germany. Frontiers in Environmental Science, 9, Article ID: 778568. https://doi.org/10.3389/fenvs.2021.778568
[63]
Shadmehri Toosi, A., Calbimonte, G. H., Nouri, H., & Alaghmand, S. (2019). River Basin-Scale Flood Hazard Assessment Using a Modified Multi-Criteria Decision Analysis Approach: A Case Study. JournalofHydrology,574, 660-671. https://doi.org/10.1016/j.jhydrol.2019.04.072
[64]
Skilodimou, H. D., Bathrellos, G. D., Chousianitis, K., Youssef, A. M., & Pradhan, B. (2019). Multi-Hazard Assessment Modeling via Multi-Criteria Analysis and GIS: A Case Study. EnvironmentalEarthSciences,78, 1-21. https://doi.org/10.1007/s12665-018-8003-4
[65]
Soytong, P., Janchidfa, K., & Chayhard, S. (2023). Analysis of Water Resources and Water Potentials under Conditions of Land Use-Urban-Industrial-Agricultural Change and Climate Change in the Eastern Region of Thailand. International Journal of Agricultural Technology, 19, 733-754.
[66]
Stefanidis, S., & Stathis, D. (2013). Assessment of Flood Hazard Based on Natural and Anthropogenic Factors Using Analytic Hierarchy Process (AHP). NaturalHazards,68, 569-585. https://doi.org/10.1007/s11069-013-0639-5
[67]
Swiss NGO DRR Platform (2018). From Grey to Green: Natural-Based Solutions for Disaster Risk Reduction and Resilience Building. https://www.shareweb.ch/site/DRR/Documents/Types%20of%20activity/Community-based%20DRR/DRR-Platform-NBS-F2F_Flyer_4p_28032018.pdf
[68]
Tate, E. (1999). Introduction to HEC-RAS. http://www.ce.utexas.edu/prof/maidment/grad/tate/research/RASExercise/webfiles/hecras.html
[69]
Thai Meteorological Department (TMD). (2017). Historical Rainfall Data for Thailand [Data set]. Climate Center. Thai Meteorological Department.
[70]
Thieme, M., Birnie-Gauvin, K., Opperman, J. J., Franklin, P. A., Richter, H., Baumgartner, L. et al. (2023). Measures to Safeguard and Restore River Connectivity. EnvironmentalReviews,32, 366-386. https://doi.org/10.1139/er-2023-0019
[71]
Tingsanchali, T., & Keokhumcheng, Y. (2019) A Method for Evaluating Flood Hazard and Flood Risk of East Bangkok Plain, Thailand. Engineering Sustainability, 172, 385-392.
[72]
Tiwari, A. (2019). Urban Risk Assessment Based on Integrating Natural and Anthropo-genic Factors Using Spatial Multi-Criteria Decision Approach: A Case Study of Flood and Seismic Hazards in Kathmandu Valley. Unpublished Master’s Thesis, Asian Institute of Technology, Pathum Thani, Thailand.
[73]
Trisurat, Y., Shirakawa, H., & Johnston, J. M. (2019). Land-Use/Land-Cover Change from Socio-Economic Drivers and Their Impact on Biodiversity in Nan Province, Thailand. Sustainability,11, Article No. 649. https://doi.org/10.3390/su11030649
[74]
U.S. Geological Survey (USGS). (2017). Shuttle Radar Topography Mission (SRTM) Digital Elevation Model for Thailand [Data set]. NASA Earth Data. https://earthexplorer.usgs.gov/
[75]
UN Environment (2016). Nature-Based Solutions for Water Management under Climate Change (pp. 1-26).
[76]
UN Environment-DHI, UN Environment & IUCN (2018). Nature-Based Solutions for Water Management: A Primer. https://wedocs.unep.org/bitstream/handle/20.500.11822/32058/NBSW.pdf?sequence=1&isAllowed=y
Xu, J., Wang, Z., Shen, F., Ouyang, C., & Tu, Y. (2016). Natural Disasters and Social Conflict: A Systematic Literature Review. InternationalJournalofDisasterRiskReduction,17, 38-48. https://doi.org/10.1016/j.ijdrr.2016.04.001
[79]
Yang, S., Zhao, B., Yang, D., Wang, T., Yang, Y., Ma, T. et al. (2023). Future Changes in Water Resources, Floods and Droughts under the Joint Impact of Climate and Land-Use Changes in the Chao Phraya Basin, Thailand. JournalofHydrology,620, Article ID: 129454. https://doi.org/10.1016/j.jhydrol.2023.129454
[80]
Yu, Y., Zhao, W., Martinez-Murillo, J. F., & Pereira, P. (2020). Loess Plateau: From Degradation to Restoration. ScienceoftheTotalEnvironment,738, Article ID: 140206. https://doi.org/10.1016/j.scitotenv.2020.140206
[81]
Zenkoji, S., Oda, S., Tebakari, T., & Archevarahuprok, B. (2019). Spatial Characteristics of Flooded Areas in the Mun and Chi River Basins in Northeastern Thailand. JournalofDisasterResearch,14, 1337-1345. https://doi.org/10.20965/jdr.2019.p1337
[82]
Zhang, Z., Liu, J., & Huang, J. (2020). Hydrologic Impacts of Cascade Dams in a Small Headwater Watershed under Climate Variability. JournalofHydrology,590, Article ID: 125426. https://doi.org/10.1016/j.jhydrol.2020.125426