全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Larger Scale Photochemical Bromination of Toluene, 1-Methylnaphthalene and Acetophenone in Aqueous Biphasic System and Applications of the Crude Products in Synthesis

DOI: 10.4236/oalib.1112872, PP. 1-21

Keywords: Alkylation, Anticancer, Photochemical Bromination, Phase Transfer Catalysis

Full-Text   Cite this paper   Add to My Lib

Abstract:

Photochemical bromination of toluene up to 300 mmol per run in aqueous biphasic system formed benzyl bromide of sufficient purity to be used directly for benzylations without any purification. 1-Methylnaphthalene and acetophenone react similarly. An approach to (R) and (S) 1-O-triphenylmethyl-glycerol is presented based on L- and D-xylose.

References

[1]  Oriyama, T., Iwanami, K., Tsukamoto, K., Ichimura, Y. and Koga, G. (1991) Halogenative Allylation and Reduction of Aro-matic Acetals by Double Substitution of Alkoxyl Groups in Acetal. Bulletin of the Chemical Society of Japan, 64, 1410-1412. https://doi.org/10.1246/bcsj.64.1410
[2]  Mitchell, R. and Iyer, V. (1989) An Improved Procedure for Bromomethylation of Aromatics Using Phase-Transfer Catalysis. Rapid Bis-Haloalkylation. Synlett, 1989, 55-57. https://doi.org/10.1055/s-1989-34708
[3]  Bock, K., Pedersen, C., Rasmussen, P., Larsen, C., Nielsen, P.H., Norgård, S., et al. (1976) Reaction of Esters with Dibromomethyl Methyl Ether. Acta Chemica Scandinavica, 30, 172-176. https://doi.org/10.3891/acta.chem.scand.30b-0172
[4]  Khazdooz, L., Zarei, A., Aghaei, H., Azizi, G. and Gheisari, M.M. (2016) An Efficient and Selective Method for the Iodination and Bromination of Alcohols under Mild Conditions. Tetrahe-dron Letters, 57, 168-171. https://doi.org/10.1016/j.tetlet.2015.11.078
[5]  Ajvazi, N. and Stavber, S. (2016) Direct Halogenation of Alcohols with Halosilanes under Catalyst- And Organic Solvent-Free Reaction Conditions. Tetrahedron Let-ters, 57, 2430-2433. https://doi.org/10.1016/j.tetlet.2016.04.083
[6]  Petten, C.F., Kalviri, H.A. and Kerton, F.M. (2015) Halodehydroxylation of Alcohols to Yield Benzylic and Alkyl Halides in Ionic Liquids. Sustainable Chemical Processes, 3, Article No. 16. https://doi.org/10.1186/s40508-015-0043-4
[7]  Das, P.J., Das, J. and Das, D. (2018) An Efficient Conversion of Alcohols to Alkyl Bromides Using Pyridinium Based Ionic Liquids: A Green Alternative to Appel Reaction. Asian Journal of Chemistry, 30, 651-654. https://doi.org/10.14233/ajchem.2018.21086
[8]  Nakamura, H., Usui, T., Kuroda, H., Ryu, I., Matsubara, H., Yasuda, S., et al. (2003) Fluorous Solvent as a New Phase-Screen Medium between Rea-gents and Reactants in the Bromination and Chlorination of Alcohols. Organic Letters, 5, 1167-1169. https://doi.org/10.1021/ol034060w
[9]  Romero, M.A., González-Delgado, J.A. and Arteaga, J.F. (2015) Synthesis of Stil-bene Derivatives: A Comparative Study of Their Antioxidant Activities. Natural Product Communications, 10, 1257-1262. https://doi.org/10.1177/1934578x1501000731
[10]  Jordan, A., Denton, R.M. and Sneddon, H.F. (2020) Development of a More Sustainable Appel Reaction. ACS Sustainable Chemistry & Engineering, 8, 2300-2309. https://doi.org/10.1021/acssuschemeng.9b07069
[11]  Ferreri, C., Costantino, C., Chatgilialoglu, C., Boukherroub, R. and Manuel, G. (1998) The Versatile Behavior of the PdCl2/Et3SiH System. Conversion of Alcohols to the Corresponding Halides and Alkanes. Journal of Organometallic Chemistry, 554, 135-137. https://doi.org/10.1016/s0022-328x(97)00667-0
[12]  Zhu, H., Wei, K., Cui, Y. and Zheng, A. (2020) Method for Pre-paring Bromide from Organic Chloride. CN110922294A.
[13]  Li, X., He, J. and Zhang, Y. (2018) BBr3-Assisted Preparation of Aromatic Alkyl Bromides from Lignin and Lignin Model Compounds. The Journal of Organic Chemistry, 83, 11019-11027. https://doi.org/10.1021/acs.joc.8b01628
[14]  Lee, I., Discekici, E.H., Shankel, S.L., Anastasaki, A., Read de Alaniz, J., Hawker, C.J., et al. (2017) Desulfurization-Bromination: Direct Chain-End Modification of RAFT Polymers. Polymer Chemistry, 8, 7188-7194. https://doi.org/10.1039/c7py01702b
[15]  Rathnayake, M.D. and Weaver, J.D. (2019) Alkyl Halides via Visible Light Mediated Dehalogenation. Organic Letters, 21, 9681-9687. https://doi.org/10.1021/acs.orglett.9b03848
[16]  Gandelman, M., Nisnevich, G.A., Kulbitski, K. and Artaryan, A. (2016) Process for the Preparation of Organic Bromides. WO2017060905A1.
[17]  de Almeida, L.S., Esteves, P.M. and de Mattos, M.C.S. (2015) Tribromoisocyanuric Acid as a Green Reagent for Benzylic Bromination of Alkylarenes. Tetrahedron Letters, 56, 6843-6845. https://doi.org/10.1016/j.tetlet.2015.10.081
[18]  Kim, Y. (2021) N-Bromosaccharin. In: e-EROS Ency-clopedia of Reagente for Organic Chemistry, 1-4.
[19]  Moretti, F., Poisson, G. and Marsura, A. (2016) Improved Halogena-tion of Methyl Aromatics and Methyl Heteroaromatics: Unexpected Reactivity of Tetrahalogeno-Diphenylglycolurils. Het-eroatom Chemistry, 27, 173-183. https://doi.org/10.1002/hc.21314
[20]  Torregrosa, R.R.P. (2015) Ammonium Molyb-date. In: e-EROS Encyclopedia of Reagente for Organic Chemistry, 1-2.
[21]  Fournier, M.J.L. (2001) Tetramethylammonium Tribromide. In: e-EROS Encyclopedia of Reagente for Organic Chemistry, 1.
[22]  Suzuki, H. and Nishina, Y. (2016) Prepa-ration of Manganese/Graphite Oxide Composite Using Permanganate and Graphite: Application as Catalyst in Bromination of Hydrocarbons. Bulletin of the Chemical Society of Jap an, 90, 74-78. https://doi.org/10.1246/bcsj.20160346
[23]  Xiao, X. and Chen, Y. (2017) Preparation of Benzyl Bromide. CN107098791.
[24]  Petzold, D. and König, B. (2017) Photocata-lytic Oxidative Bromination of Electron‐rich Arenes and Heteroarenes by Anthraquinone. Advanced Synthesis & Catalysis, 360, 626-630. https://doi.org/10.1002/adsc.201701276
[25]  Delgado-Abad, T., Martínez-Ferrer, J., Reig-López, J., Mello, R., Acerete, R., Asensio, G., et al. (2014) On the Ionizing Properties of Supercritical Carbon Dioxide: Uncatalyzed Electro-philic Bromination of Aromatics. RSC Advances, 4, 51016-51021. https://doi.org/10.1039/c4ra10557e
[26]  Podgoršek, A., Stavber, S., Zupan, M. and Iskra, J. (2006) Free Radical Bromination by the H2O2-HBr System on Water. Tetrahedron Letters, 47, 7245-7247. https://doi.org/10.1016/j.tetlet.2006.07.109
[27]  Liu, H., Chen, L., Zhou, F., Zhang, Y., Xu, J., Xu, M., et al. (2019) Anti-oligomerization Sheet Molecules: Design, Synthesis and Evaluation of Inhibitory Activities against Α-Synuclein Aggregation. Bioorganic & Medicinal Chemistry, 27, 3089-3096. https://doi.org/10.1016/j.bmc.2019.05.032
[28]  Crouch, R.D., Pindi, S. and Li, G. (2013) N, N-Dibromobenzenesulfonamide and N. N-Dibromo-P-Toluenesulfonamide. In: e-EROS Encyclopedia of Reagente for Organic Chemistry, 1-7.
[29]  Lu, W., Zhao, M. and Li, M. (2018) Visible-light-driven Oxidative Mono- and Dibromination of Benzylic Sp3 C-H Bonds with Potassium Bromide/Oxone at Room Temperature. Synthesis, 50, 4933-4939. https://doi.org/10.1055/s-0037-1610651
[30]  Shaw, H., Perlmutter, H.D., Gu, C., Arco, S.D. and Quibuyen, T.O. (1997) Free-radical Bromination of Selected Organic Compounds in Water. The Journal of Organic Chemistry, 62, 236-237. https://doi.org/10.1021/jo950371b
[31]  Ballou, C.E. and Fischer, H.O.L. (1954) A New Synthesis of 2-Phosphoryl-D-Glyceric Acid. Journal of the American Chemical Society, 76, 3188-3193. https://doi.org/10.1021/ja01641a023
[32]  Richtmyer, N.K. (1962) β-D-Altrose. Methods in Carbohydrate Chemistry, 1, 107-113.
[33]  Sletten, E.M. and Liotta, L.J. (2006) A Flexible Stereospecific Synthesis of Polyhydroxylated Pyrrolizidines from Commercially Available Pyranosides. The Journal of Organic Chemistry, 71, 1335-1343. https://doi.org/10.1021/jo051792o
[34]  Niu, B., Shan, J., Wu, X., and Sun, H. (2009) Improved Synthesis of 2, 5 Anhy-dro-3, 4, 6-Tri-O-Benzyl-D-Glucitol. Journal of China Pharmaceutical University, No. 6, 205-208.
[35]  Doboszewski, B. (1997) Synthesis of Homo-C-D4T and Homo-C-thymidine. Nucleosides and Nucleotides, 16, 1049-1052. https://doi.org/10.1080/07328319708006130
[36]  Doboszewski, B. (2009) D-arbinose-based Synthesis of Homo-c-D4T and Homo-c-Thymidine. Nucleosides, Nucleotides and Nucleic Acids, 28, 875-901. https://doi.org/10.1080/15257770903306518
[37]  Bennett, S.M., Ogilvie, K.K. and Roduit, J.P. (1989) Synthesis of Nov-el Isocytosine Pseudonucleotide Analogues. Nucleosides and Nucleotides, 8, 49-64. https://doi.org/10.1080/07328318908054158
[38]  Persky, R. and Albeck, A. (2000) Synthesis of Selectively Labeled D-Fructose and D-Fructose Phosphate Analogues Locked in the Cyclic Furanose Form. The Journal of Organic Chemistry, 65, 5632-5638. https://doi.org/10.1021/jo0003908
[39]  Charette, A.B. and Cote, B. (1993) Asymmetric Cyclopropanation of Allylic Ethers: Cleavage and Regeneration of the Chiral Auxiliary. The Journal of Organic Chemistry, 58, 933-936. https://doi.org/10.1021/jo00056a028
[40]  Aspinall, G.O., Przybylski, E., Ritchie, R.G.S. and Chung, O.W. (1978) Nitrous Acid Deamination of Methylated Amino-Oligosaccharide Glycosides. Carbohydrate Research, 66, 225-243. https://doi.org/10.1016/s0008-6215(00)83255-3
[41]  Guthrie, R., Jenkins, I., Watters, J., Wright, M. and Yamasaki, R. (1982) Synthesis of Some Derivatives of 2, 5-Anhydro-D-Mannitol. Australian Journal of Chemistry, 35, 2169-2173. https://doi.org/10.1071/ch9822169
[42]  Tegdes, A., Medgyes, G., Boros, S. and Kuszmann, J. (2006) Glycosidation of 2, 5-Anhydro-3, 4-Di-O-Benzyl-D-Mannitol with Different Glucopyranosyl Donors. a Comparative Study. Carbohydrate Re-search, 341, 776-781. https://doi.org/10.1016/j.carres.2006.01.028
[43]  Doboszewski, B. and Herdewijn, P. (2011) Simple Approach to 1-O-Protected (R)- and (s)-Glycerols from L- and D-Arabinose for Glycerol Nucleic Acids (GNA) Mono-mers Research. Tetrahedron Letters, 52, 3853-3855. https://doi.org/10.1016/j.tetlet.2011.05.073
[44]  Ashton, W.T., Canning, L.F., Reynolds, G.F., Tolman, R.L., Karkas, J.D., Liou, R., et al. (1985) Synthesis and Antiherpetic Activity of (S)-, (R)-, and (. -.)-9-[(2, 3-Dihydroxy-1-Propoxy)methyl]guanine, Linear Isomers of 2’-Nor-2’-Deoxyguanosine. Journal of Medicinal Chemistry, 28, 926-933. https://doi.org/10.1021/jm00145a014
[45]  Beving, H.F.G., Borén, H.B., Garegg, P.J., Haug, A. and Hagen, G. (1967) Synthesis of 1-O-β-D-Galactofuranosyl-D-Glycerol. Acta Chemica Scandinavica, 21, 2083-2086. https://doi.org/10.3891/acta.chem.scand.21-2083
[46]  Uzawa, H., Nishida, Y., Ohrui, H. and Meguro, H. (1989) Simple Method to Determine the Absolute Configuration of the Glycerol Moiety in Glycosyl Glycerols Based on ORD and CD. Agricultural and Biological Chemistry, 53, 2327-2333. https://doi.org/10.1080/00021369.1989.10869654
[47]  Cardillo, G., Oren, M., Romero, M. and Sandri, S. (1989) Enan-tioselective Synthesis of 2-Benzyloxy Alcohols and 1, 2-Diols via Alkylation of Chiral Glycolate Imides. A Convenient Ap-proach to Optically Active Glycerol Derivatives. Tetrahedron, 45, 1501-1508. https://doi.org/10.1016/0040-4020(89)80148-6
[48]  Kam, B.L. and Oppenheimer, N.J. (1979) Selective Tritylation: A General, One-Step, Method for Synthesis of 5-O-Trityl-D-Pentofuranoses. Carbohydrate Research, 69, 308-310. https://doi.org/10.1016/s0008-6215(00)85783-3
[49]  Amigues, E.J., Greenberg, M.L., Ju, S., Chen, Y. and Migaud, M.E. (2007) Synthesis of Cyclophospho-Glucoses and Glucitols. Tetrahedron, 63, 10042-10053. https://doi.org/10.1016/j.tet.2007.07.027
[50]  Grayson, M. and Keough, P.T. (1960) Phosphonium Compounds. II. De-composition of Phosphonium Alkoxides to Hydrocarbon, Ether and Phosphine Oxide. Journal of the American Chemical So-ciety, 82, 3919-3924. https://doi.org/10.1021/ja01500a033
[51]  King, F.E. and Henshall, T. (1945) 105. the Stereoiso-meric Αα’-Di-(1-Naphthyl)Succinic Acids. Journal of the American Chemical Society, 1945, 417-418. https://doi.org/10.1039/jr9450000417
[52]  Elter, J.K., Biehl, P., Gottschaldt, M. and Schacher, F.H. (2019) Core-Crosslinked Worm-Like Micelles from Polyester-Based Diblock Terpolymer. Polymer Chemistry, 10, 5425-5439. https://doi.org/10.1039/C9PY01054H
[53]  Gati, W., Munyemana, F., Colens, A., Srour, A., Dufour, M., Vardhan Reddy, K.H., et al. (2020) A Mild Method for the Replacement of a Hydroxyl Group by Halogen: 2. Unified Procedure and Stereo-chemical Studies. Tetrahedron, 76, Article ID: 131441. https://doi.org/10.1016/j.tet.2020.131441
[54]  Joseph, K.M. and Larraza-Sanchez, I. (2011) Synthesis of Benzyl Bromides with Hexabromoacetone: An Alternative Path to Drug Intermedi-ates. Tetrahedron Letters, 52, 13-16. https://doi.org/10.1016/j.tetlet.2010.10.133
[55]  Cui, X., Guan, Y., Li, N., Lv, H., Fu, L., Guo, K., et al. (2014) A Mild and Efficient Method for Bromination of Alcohols Using Α, Α-Dibromo-Β-Dicarbonyl Com-pounds as Halogen Sources. Tetrahedron Letters, 55, 90-93. https://doi.org/10.1016/j.tetlet.2013.10.120
[56]  Heropoulos, G.A., Cravotto, G., Screttas, C.G. and Steele, B.R. (2007) Contrasting Chemoselectivities in the Ultrasound and Microwave Assisted Bromination Reactions of Substituted Alkylaro-matics with N-bromosuccinimide. Tetrahedron Letters, 48, 3247-3250. https://doi.org/10.1016/j.tetlet.2007.03.023
[57]  Bullpitt, M., Kitching, W., Doddrell, D. and Adcock, W. (1976) Substit-uent Effect of the Bromomethyl Group. Carbon-13 Magnetic Resonance Study. The Journal of Organic Chemistry, 41, 760-766. https://doi.org/10.1021/jo00867a003
[58]  Waykole, L., Prashad, M., Palermo, S., Repic, O. and Blacklock, T.J. (1997) Selective Benzylic Bromination of 2-methylnaphthalene. Synthetic Communications, 27, 2159-2163. https://doi.org/10.1080/00397919708006823
[59]  Kajigaeshi, S., Kakinami, T., Tanaka, T., Moriwaki, M. and Fujisaki, S. (1988) Benzylic Bromination of Arenes by Use of Benzylmethylammonium Tribromide. ChemXPress, 3, 347-350.
[60]  Ghorbani-Vaghei, R., Chegini, M., Veisi, H. and Karimi-Tabar, M. (2009) Poly(n, n’-Dibromo-N-Ethyl-Benzene-1, 3-Disulfonamide), N, n, n’, n’-Tetrabromobenzene-1, 3-Disulfonamide and Novel Poly(n, n’-Dibromo-N-Phenylbenzene-1, 3-Disulfonamide) as Powerful Reagents for Benzylic Bromination. Tetrahedron Letters, 50, 1861-1865. https://doi.org/10.1016/j.tetlet.2009.02.007
[61]  Sun, J., Peng, X. and Guo, H. (2015) Studies on Photoin-duced Carbon-Silicon Bond Cleavage and Subsequent Bromination Reaction. Chinese Journal of Organic Chemistry, 35, 1375-1379. https://doi.org/10.6023/cjoc201412028
[62]  Gross, H. and Keitel, I. (1969) Zur Darstellung von N-Hydroxyphthalimid und N‐Hydroxysuccinimid. Journal für Praktische Chemie, 311, 692-693. https://doi.org/10.1002/prac.19693110424
[63]  Lee, J.M., Park, E.J., Cho, S.H. and Chang, S. (2008) Cu-Facilitated C-O Bond Formation Using n-Hydroxyphthalimide: Efficient and Selective Functionalization of Benzyl and Allylic C-H Bonds. Journal of the American Chemical Society, 130, 7824-7825. https://doi.org/10.1021/ja8031218
[64]  Todesco, R., Gelan, J., Martens, H., Put, J. and De Schryver, F.C. (1983) Photochemistry of Non-Conjugated Bichromophoric Systems. Tetrahe-dron, 39, 1407-1413. https://doi.org/10.1016/s0040-4020(01)91912-x
[65]  Cowper, R.M. and Davidson, L.H. (1943) Phenacyl Bromide. Organic Syntheses, 2, 480-482.
[66]  Rather, J.B. and Reid, E.E. (1919) The Identification of Acids. IV. Phenacyl Esters. Journal of the American Chemical Society, 41, 75-83. https://doi.org/10.1021/ja01458a009
[67]  Kumar, A., Kurbah, S.D., Syiemlieh, I., Dhanpat, S.A., Borthakur, R. and Lal, R.A. (2021) Synthesis, Characterization, Reactivity, and Catalytic Studies of Heterobimetallic Vanadium(v) Complexes Con-taining Hydrazone Ligands. Inorganica Chimica Acta, 515, Article ID: 120068. https://doi.org/10.1016/j.ica.2020.120068
[68]  Lv, H., Yang, X., Wang, B., Yang, H., Wang, X. and Wang, Z. (2021) Chiral Bidentate Phosphoramidite-Pd Catalyzed Asymmetric Decarboxylative Dipolar Cycloaddition for Multistereogenic Tetrahy-drofurans with Cyclic n-Sulfonyl Ketimine Moieties. Organic Letters, 23, 4715-4720. https://doi.org/10.1021/acs.orglett.1c01411
[69]  Wang, F., Liu, H. and Liu, Y. (2025) Green Preparation of Aromatic Ox-ygen-Containing Compounds by Photocatalytic Cracking of Lignin. Patent CN119263965.
[70]  Li, S., Zhu, B., Lee, R., Qiao, B. and Jiang, Z. (2018) Visible Light-Induced Selective Aerobic Oxidative Transposition of Vinyl Halides Using a Tetra-halogenoferrate(III) Complex Catalyst. Organic Chemistry Frontiers, 5, 380-385. https://doi.org/10.1039/c7qo00798a
[71]  Wang, J., Zhang, C., Ye, X., Du, W., Zeng, S., Xu, J., et al. (2021) An Efficient and Practical Aerobic Oxidation of Benzylic Methylenes by Recyclable n-Hydroxyimide. RSC Advances, 11, 3003-3011. https://doi.org/10.1039/d0ra10475b
[72]  Wang, Y., Li, P., Wang, J., Liu, Z., Wang, Y., Lu, Y., et al. (2021) Visible-Light Photocatalytic Selective Oxidation of C(sp3)-H Bonds by Anion-Cation Dual-Metal-Site Nanoscale Localized Carbon Nitride. Catalysis Science & Technology, 11, 4429-4438. https://doi.org/10.1039/d1cy00328c
[73]  Huang, Z., Guan, R., Shanmu-gam, M., Bennett, E.L., Robertson, C.M., Brookfield, A., et al. (2021) Oxidative Cleavage of Alkenes by O2 with a Non-Heme Manganese Catalyst. Journal of the American Chemical Society, 143, 10005-10013. https://doi.org/10.1021/jacs.1c05757
[74]  Fu, W., Tan, P., Deng, W. and Xiang, J. (2017) Efficient Hydrolysis of Haloal-kynes to α-Haloketones in Ionic Liquid. Chinese Journal of Organic Chemistry, 37, 1501-1505. https://doi.org/10.6023/cjoc201610031
[75]  Wang, Z., Wang, L., Wang, Z., Li, P. and Zhang, Y. (2021) A Practical Syn-thesis of α-Bromo/Iodo/Chloroketones from Olefins under Visible-Light Irradiation Conditions. Chinese Chemical Letters, 32, 429-432. https://doi.org/10.1016/j.cclet.2020.02.022
[76]  Lin, X., Fang, C., Huang, X. and Xiao, X. (2021) 1, 1, 2-Tribromoethyl Arenes: Novel and Highly Efficient Precursors for the Synthesis of 1-Bromoalkynes and α-Bromoketones. Organic Chemistry Frontiers, 8, 4387-4391. https://doi.org/10.1039/d1qo00793a
[77]  Ramirez, F. and Dershowitz, S. (1957) Phosphinemethylenes. II. Triphenylphosphineacylmethylenes. The Journal of Organic Chemistry, 22, 41-45. https://doi.org/10.1021/jo01352a010
[78]  Doboszewski, B. and Herdewijn, P. (2012) 1, 2; 3, 4-Di-O-Isopropylidene-L-Galactose Synthesis from Its D-Enantiomer. Tetrahedron Letters, 53, 2253-2256. https://doi.org/10.1016/j.tetlet.2012.02.091
[79]  van Boeckel, C.A.A., Visser, G.M. and van Boom, J.H. (1985) Synthesis of Phosphatidyl-β-Glucosyl Glycerol Containing a Dioleoyl Diglyceride Moiety. Tetrahedron, 41, 4557-4565. https://doi.org/10.1016/s0040-4020(01)82350-4
[80]  Gisbertz, S. and Pieber, B. (2020) Heterogeneous Photocatalysis in Organic Synthesis. ChemPhotoChem, 4, 456-475. https://doi.org/10.1002/cptc.202000014
[81]  Doboszewski, B., Bez-erra da Silva, G., dos Santos Aguiar, J. and Barroso de Oliveira, E. (2023) Synthesis and Anticancer/Antiproliferative Prop-erties of Unpublished Compounds with a Structure of (R) 1, 2-Bis-(1-Naphthylmethyl)-Glycerol, (S) 1, 2-Bis-(1-Naphthylmethyl)-Glycerol, Bis-(1-Naphthylmethyl)-Pentaerythritol, ((Bis 1-Naphthyloxy)-Methyl)Benzene and 8-Benzyloxy-N-Benzyl Bromide. Patent Application BR 1020230221440.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133