全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

青光眼对不同区域视网膜神经纤维层厚度与光反射信号的影响研究
Study on the Impacts of Glaucoma on the Thickness and Light Reflectivity of Retinal Nerve Fiber Layer in Different Regions

DOI: 10.12677/hjo.2024.134019, PP. 142-150

Keywords: 光反射信号,青光眼,视网膜神经纤维层,光相干断层扫描
Light Reflectivity
, Glaucoma, Retinal Nerve Fiber Layer, Optical Coherence Tomography

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:利用光相干断层扫描(OCT)研究不同区域视网膜神经纤维层(RNFL)厚度与光反射信号值在青光眼中的变化情况。方法:病例对照研究。纳入49名健康受试者的49只眼及47名青光眼患者的47只眼进行以视盘为中心的三维OCT扫描。在半径为1.7 mm、1.95 mm和2.2 mm的3个分析环下,导出视盘周围环形截面图像,然后通过Image J软件进行分析。对比两组间不同半径,分析环下不同象限RNFL厚度及光反射信号的改变。结果:青光眼组RNFL在不同分析半径不同象限下的厚度值及光反射信号值基本较对照组低(p < 0.05,独立t检验),其中在下方象限中两组厚度差别最大;在颞侧象限中光反射信号值差别最大。大部分区域RNFL厚度与视野MD呈中至高度正相关(p < 0.01),与PSD呈低至中度负相关(p < 0.05);所有区域RNFL光反射信号值与视野MD呈中度正相关(p均 < 0.01),与PSD呈低至中度负相关(p均 < 0.05)。结论:不同区域的RNFL光反射信号值在一定程度上体现了青光眼的RNFL损伤程度及区域性改变,可以作为青光眼诊断的辅助诊断指标之一。
Objective: To investigate the changes in the thickness of the retinal nerve fiber layer (RNFL) and light reflectivity in different regions in eyes with glaucoma using optical coherence tomography (OCT). Methods: A case-control study was conducted, including 49 eyes from 49 healthy subjects and 47 eyes from 47 glaucoma patients for three-dimensional OCT scans centered on the optic disc. Circular peripapillary sections were extracted at radii of 1.7 mm, 1.95 mm, and 2.2 mm and then analyzed using Image J software. The changes in RNFL thickness and light reflectivity in different quadrants under different radii of analysis rings were compared between the two groups. Results: The thickness and light reflectivity of the RNFL in the glaucoma group were generally lower than those in the control group at different analysis radii and in different quadrants (p < 0.05, independent t-test), with the greatest difference in thickness in the inferior quadrant and the greatest difference in light reflectivity in the temporal quadrant. The RNFL thickness in most areas showed a moderate to high positive correlation with visual field mean deviation (MD) (p < 0.01) and a low to moderate negative correlation with pattern standard deviation (PSD) (p < 0.05); the light reflectivity of the RNFL in all areas showed a moderate positive correlation with visual field MD (p < 0.01) and a low to moderate negative correlation with PSD (p < 0.05). Conclusion: The light reflectivity of the RNFL in different regions reflects the degree and regional changes of RNFL damage in glaucoma to some extent and can be used as one of the auxiliary diagnostic indicators for glaucoma diagnosis.

References

[1]  Gedde, S.J., Vinod, K., Wright, M.M., Muir, K.W., Lind, J.T., Chen, P.P., et al. (2021) Primary Open-Angle Glaucoma Preferred Practice Pattern®. Ophthalmology, 128, P71-P150.
https://doi.org/10.1016/j.ophtha.2020.10.022
[2]  Jonas, J.B., Aung, T., Bourne, R.R., Bron, A.M., Ritch, R. and Panda-Jonas, S. (2017) Glaucoma. The Lancet, 390, 2183-2193.
https://doi.org/10.1016/s0140-6736(17)31469-1
[3]  Medeiros, F.A., Zangwill, L.M., Bowd, C., Vessani, R.M., Susanna, R. and Weinreb, R.N. (2005) Evaluation of Retinal Nerve Fiber Layer, Optic Nerve Head, and Macular Thickness Measurements for Glaucoma Detection Using Optical Coherence Tomography. American Journal of Ophthalmology, 139, 44-55.
https://doi.org/10.1016/j.ajo.2004.08.069
[4]  Leung, C.K., Mohamed, S., Leung, K.S., Cheung, C.Y., Chan, S.L., Cheng, D.K., et al. (2006) Retinal Nerve Fiber Layer Measurements in Myopia: An Optical Coherence Tomography Study. Investigative Opthalmology & Visual Science, 47, 5171-5176.
https://doi.org/10.1167/iovs.06-0545
[5]  Qiu, K.L., Zhang, M.Z., Leung, C.K., Zhang, R.P., Lu, X.H., Wang, G., et al. (2011) Diagnostic Classification of Retinal Nerve Fiber Layer Measurement in Myopic Eyes: A Comparison between Time-Domain and Spectral-Domain Optical Coherence Tomography. American Journal of Ophthalmology, 152, 646-653.e2.
https://doi.org/10.1016/j.ajo.2011.04.002
[6]  Kim, K.E., Jeoung, J.W., Park, K.H., Kim, D.M. and Kim, S.H. (2015) Diagnostic Classification of Macular Ganglion Cell and Retinal Nerve Fiber Layer Analysis: Differentiation of False-Positives from Glaucoma. Ophthalmology, 122, 502-510.
https://doi.org/10.1016/j.ophtha.2014.09.031
[7]  Jansonius, N.M., Schiefer, J., Nevalainen, J., Paetzold, J. and Schiefer, U. (2012) A Mathematical Model for Describing the Retinal Nerve Fiber Bundle Trajectories in the Human Eye: Average Course, Variability, and Influence of Refraction, Optic Disc Size and Optic Disc Position. Experimental Eye Research, 105, 70-78.
https://doi.org/10.1016/j.exer.2012.10.008
[8]  Leung, C.K., Yu, M., Weinreb, R.N., Mak, H.K., Lai, G., Ye, C., et al. (2012) Retinal Nerve Fiber Layer Imaging with Spectral-Domain Optical Coherence Tomography: Interpreting the RNFL Maps in Healthy Myopic Eyes. Investigative Opthalmology & Visual Science, 53, 7194-7200.
https://doi.org/10.1167/iovs.12-9726
[9]  Pons, M.E. (2000) Assessment of Retinal Nerve Fiber Layer Internal Reflectivity in Eyes with and without Glaucoma Using Optical Coherence Tomography. Archives of Ophthalmology, 118, 1044-1047.
https://doi.org/10.1001/archopht.118.8.1044
[10]  van der Schoot, J., Vermeer, K.A., de Boer, J.F. and Lemij, H.G. (2012) The Effect of Glaucoma on the Optical Attenuation Coefficient of the Retinal Nerve Fiber Layer in Spectral Domain Optical Coherence Tomography Images. Investigative Opthalmology & Visual Science, 53, 2424-2430.
https://doi.org/10.1167/iovs.11-8436
[11]  Huang, X., Knighton, R.W., Spector, Y.Z. and Feuer, W.J. (2017) Cytoskeletal Alteration and Change of Retinal Nerve Fiber Layer Birefringence in Hypertensive Retina. Current Eye Research, 42, 936-947.
https://doi.org/10.1080/02713683.2016.1262043
[12]  Sharoukhov, D., Bucinca-Cupallari, F. and Lim, H. (2018) Microtubule Imaging Reveals Cytoskeletal Deficit Predisposing the Retinal Ganglion Cell Axons to Atrophy in DBA/2J. Investigative Opthalmology & Visual Science, 59, 5292-5300.
https://doi.org/10.1167/iovs.18-24150
[13]  Fortune, B., Cull, G., Reynaud, J., Wang, L. and Burgoyne, C.F. (2015) Relating Retinal Ganglion Cell Function and Retinal Nerve Fiber Layer (RNFL) Retardance to Progressive Loss of RNFL Thickness and Optic Nerve Axons in Experimental Glaucoma. Investigative Opthalmology & Visual Science, 56, 3936-3944.
https://doi.org/10.1167/iovs.15-16548
[14]  Dong, Z.M., Wollstein, G., Wang, B. and Schuman, J.S. (2017) Adaptive Optics Optical Coherence Tomography in Glaucoma. Progress in Retinal and Eye Research, 57, 76-88.
https://doi.org/10.1016/j.preteyeres.2016.11.001
[15]  Manassakorn, A., Nouri-Mahdavi, K. and Caprioli, J. (2006) Comparison of Retinal Nerve Fiber Layer Thickness and Optic Disk Algorithms with Optical Coherence Tomography to Detect Glaucoma. American Journal of Ophthalmology, 141, 105-115.e1.
https://doi.org/10.1016/j.ajo.2005.08.023
[16]  Lee, W.J., Park, K.H. and Seong, M. (2020) Vulnerability Zone of Glaucoma Progression in Combined Wide-Field Optical Coherence Tomography Event-Based Progression Analysis. Investigative Opthalmology & Visual Science, 61, Article 56.
https://doi.org/10.1167/iovs.61.5.56
[17]  Rao, H.L. (2011) Structure-Function Relationship in Glaucoma Using Spectral-Domain Optical Coherence Tomography. Archives of Ophthalmology, 129, 864-871.
https://doi.org/10.1001/archophthalmol.2011.145
[18]  Quigley, H.A., Katz, J., Derick, R.J., Gilbert, D. and Sommer, A. (1992) An Evaluation of Optic Disc and Nerve Fiber Layer Examinations in Monitoring Progression of Early Glaucoma Damage. Ophthalmology, 99, 19-28.
https://doi.org/10.1016/s0161-6420(92)32018-4
[19]  Kerrigan-Baumrind, L.A., Quigley, H.A., Pease, M.E., Kerrigan, D.F. and Mitchell, R.S. (2000) Number of Ganglion Cells in Glaucoma Eyes Compared with Threshold Visual Field Tests in the Same Persons. Investigative Ophthalmology & Visual Science, 41, 741-748.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133