全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

冷烧结钛酸铋钠基陶瓷的热处理工艺研究
Study on Heat Treatment of Cold-Sintering Bismuth Sodium Titanate-Based Ceramics

DOI: 10.12677/ms.2024.1412189, PP. 1741-1749

Keywords: 冷烧结,热处理,钛酸铋钠,高效节能,介电性能
Cold Sintering
, Heat Treatment, Bismuth Sodium Titanate, Efficient and Energy Saving, Dielectric Property

Full-Text   Cite this paper   Add to My Lib

Abstract:

冷烧结技术(CSP)因其极低的烧结温度与较短的烧结时间,成为近年来备受关注的一种高效节能的陶瓷制备方法。但其仍存在致密度不足、可靠性等问题。本文利用化学包覆的方法将耐击穿的SiO2相引入陶瓷颗粒表面,优化钛酸铋钠基陶瓷的冷烧结性能,并系统研究了不同热处理温度对冷烧结后0.78BNT-0.22NN@SiO2陶瓷的物相结构、显微形貌及铁电性能的影响。最终,成功制备了相对密度接近99%的冷烧结陶瓷。结果表明,热处理温度为1050℃的冷烧结0.78BNT-0.22NN@SiO2陶瓷的室温介电常数为1340,介电损耗为1.4%,具有优异的介温稳定性;并且,其室温最大放电储能密度为3.56 J/cm3;样品在1 Hz至100 Hz频率范围内,储能密度变化率仅为3%,表现出了优异的储能性能。
Cold sintering process (CSP) has attracted considerable attention in recent years as an efficient and energy-saving method for ceramic preparation due to its extremely low sintering temperature and short sintering time. However, it still faces issues such as insufficient density and reliability. This paper employs a chemical coating method to introduce a breakdown-resistant SiO2 phase onto the surface of ceramic powders, optimizing the cold sintering performance of Bi0.5Na0.5TiO3(BNT)-based ceramics. The effects of different heat treatment temperatures on the phase structure, microstructure, and ferroelectric properties of cold-sintered 0.78BNT-0.22NN@SiO2 ceramics have been systematically investigated. As a result, ceramics with a relative density close to 99% were successfully prepared via the CSP with an optimized heat treatment temperature. The results indicate that the cold-sintered 0.78BNT-0.22NN@SiO2 ceramic heat-treated at 1050?C has a room temperature dielectric constant of 1340 and a dielectric loss of 1.4%, exhibiting excellent temperature stability of the dielectric properties. Moreover, its maximum discharge energy storage density at room temperature is 3.56 J/cm3, and the energy storage density variation rate is only 3% within the frequency range of 1 Hz to 100 Hz, demonstrating outstanding energy storage performance.

References

[1]  Guo, J., Berbano, S.S., Guo, H., Baker, A.L., Lanagan, M.T. and Randall, C.A. (2016) Cold Sintering Process of Composites: Bridging the Processing Temperature Gap of Ceramic and Polymer Materials. Advanced Functional Materials, 26, 7115-7121.
https://doi.org/10.1002/adfm.201602489
[2]  Guo, H., Baker, A., Guo, J. and Randall, C.A. (2016) Cold Sintering Process: A Novel Technique for Low‐Temperature Ceramic Processing of Ferroelectrics. Journal of the American Ceramic Society, 99, 3489-3507.
https://doi.org/10.1111/jace.14554
[3]  Guo, H., Baker, A., Guo, J. and Randall, C.A. (2016) Protocol for Ultralow-Temperature Ceramic Sintering: An Integration of Nanotechnology and the Cold Sintering Process. ACS Nano, 10, 10606-10614.
https://doi.org/10.1021/acsnano.6b03800
[4]  Yan, F., Qian, J., Wang, S. and Zhai, J. (2024) Progress and Outlook on Lead-Free Ceramics for Energy Storage Applications. Nano Energy, 123, Article ID: 109394.
https://doi.org/10.1016/j.nanoen.2024.109394
[5]  Zhang, L., Pu, Y., Chen, M., Peng, X., Wang, B. and Shang, J. (2023) Design Strategies of Perovskite Energy-Storage Dielectrics for Next-Generation Capacitors. Journal of the European Ceramic Society, 43, 5713-5747.
https://doi.org/10.1016/j.jeurceramsoc.2023.06.037
[6]  Fan, X., Wang, J., Yuan, H., Zheng, Z., Zhang, J. and Zhu, K. (2023) Multi-Scale Synergic Optimization Strategy for Dielectric Energy Storage Ceramics. Journal of Advanced Ceramics, 12, 649-680.
https://doi.org/10.26599/jac.2023.9220703
[7]  Zhu, W., Shen, Z., Deng, W., Li, K., Luo, W., Song, F., et al. (2024) A Review: (Bi, Na)TiO3 (BNT)-Based Energy Storage Ceramics. Journal of Materiomics, 10, 86-123.
https://doi.org/10.1016/j.jmat.2023.05.002
[8]  Qi, H., Xie, A. and Zuo, R. (2022) Local Structure Engineered Lead-Free Ferroic Dielectrics for Superior Energy-Storage Capacitors: A Review. Energy Storage Materials, 45, 541-567.
https://doi.org/10.1016/j.ensm.2021.11.043
[9]  Ning, Y., Pu, Y., Zhang, Q., Chen, Z., Zhang, J., Ouyang, T., et al. (2024) Improved Energy Storage Capacity of High-Entropy Ferroelectric Perovskite Ceramic via Flash Sintering. Journal of Power Sources, 618, Article ID: 235205.
https://doi.org/10.1016/j.jpowsour.2024.235205
[10]  Wang, W., Zhang, L., Yang, Y., Shi, W., Huang, Y., Alikin, D.O., et al. (2023) Enhancing Energy Storage Performance in Na0.5Bi0.5TiO3-Based Lead-Free Relaxor Ferroelectric Ceramics along a Stepwise Optimization Route. Journal of Materials Chemistry A, 11, 2641-2651.
https://doi.org/10.1039/d2ta09395b
[11]  Wang, T., Zhang, L., Zhang, A., Liu, J., Kong, L., Chen, G., et al. (2023) Synergistic Enhanced Energy Storage Performance of NBT-KBT Ceramics by K0.5Na0.5NbO3 Composition Design. Journal of Alloys and Compounds, 948, Article ID: 169725.
https://doi.org/10.1016/j.jallcom.2023.169725
[12]  Zhu, C., Cai, Z., Luo, B., Guo, L., Li, L. and Wang, X. (2020) High Temperature Lead-Free BNT-Based Ceramics with Stable Energy Storage and Dielectric Properties. Journal of Materials Chemistry A, 8, 683-692.
https://doi.org/10.1039/c9ta10347c
[13]  蔡子明, 李澳宇, 李欣恒, 等. 钛酸铋钠基陶瓷的冷烧结制备及介电性能[J]. 硅酸盐学报, 2023, 51(12): 3067-3076.
[14]  Zhang, T., Huang, R., Wang, H., Hao, H., Yao, Z., Liu, H., et al. (2024) Preparation of Ba0.65Bi0.07Sr0.245TiO3 Relaxor Ferroelectric Ceramics with High Energy Storage Capability by Coating Powders with ZnO. Ceramics International, 50, 7798-7806.
https://doi.org/10.1016/j.ceramint.2023.12.107
[15]  Zhang, X., Zhao, L., Liu, L., Zhang, Z. and Cui, B. (2022) Interface and Defect Modulation via a Core-Shell Design in (Na0.5Bi0.5TiO3@La2O3)-(SrSn0.2Ti0.8O3@La2O3)-Bi2O3-B2O3-SiO2 Composite Ceramics for Wide-Temperature Energy Storage Capacitors. Chemical Engineering Journal, 435, Article ID: 135061.
https://doi.org/10.1016/j.cej.2022.135061
[16]  Xiao, M., Zhen, Y., Zhu, C., Cheng, X., Zhao, P. and Wang, X. (2023) Effect of Ho‐Dy Co‐Doping on the Electrical Properties and Reliability of BaTiO3‐Based Nanoceramics for Base Metal Electrode Multilayer Ceramic Capacitor. Journal of the American Ceramic Society, 106, 5898-5906.
https://doi.org/10.1111/jace.19223
[17]  Guo, J., Baker, A.L., Guo, H., Lanagan, M. and Randall, C.A. (2016) Cold Sintering Process: A New Era for Ceramic Packaging and Microwave Device Development. Journal of the American Ceramic Society, 100, 669-677.
https://doi.org/10.1111/jace.14603

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133