|
一种无人水下航行器导管对转桨推进性能仿真分析
|
Abstract:
无人水下航行器(UUV)在军事、民用和科研等领域扮演着越来越重要的角色,导管对转桨(DCRP)作为UUV的一种常用推进方式,其推进性能对UUV的航速、噪声等性能有着重要的影响。本文针对UUV拖曳声纳阵的应用,设计了一型DCRP。采用计算流体力学(CFD)技术,对DCRP的水动力性能进行了数值仿真,模拟推进器在不同转速下的功率、扬程、效率、推力。结果表明,所设计的DCRP在设计转速下,其效率满足UUV推进技术指标要求。仿真结果为UUV拖曳声纳阵的推进技术设计提供了参考。
Unmanned Underwater Vehicles (UUVs) are playing increasingly crucial roles in military, civilian, and research applications. The ducted contra-rotating propeller (DCRP) as a common propulsion method for UUVs has a significant impact on the vehicle’s speed, noise, and other performance. This study focuses on the application of UUV towed sonar arrays and designs a type of DCRP. Using computational fluid dynamics (CFD) technology, the hydrodynamic performance of the DCRP was numerically simulated, including the propulsion unit’s power, head, efficiency, and thrust at different rotational speeds. The numerical simulations reveal that the designed DCRP satisfies the efficiency criteria for UUV propulsion technology at the designated condition, thereby validating its suitability for underwater applications. The simulation results provide a reference for the design of propulsion technology for UUV towed sonar arrays.
[1] | 傅仁琦, 曹焱, 王晓林. 无人水下航行器声呐装备现状与发展趋势[J]. 舰船科学技术, 2020, 42(2): 82-87. |
[2] | 张淏酥, 王涛, 苗建明, 等. 水下无人航行器的研究现状与展望[J]. 计算机测量与控制, 2023, 31(2): 1-7, 40. |
[3] | 倪豪良. 导管对转桨的水动力优化设计及噪声性能分析[D]: [硕士学位论文]. 哈尔滨: 哈尔滨工业大学, 2015. |
[4] | 韩耀羽. AUV对转桨设计及流场特性研究[D]: [硕士学位论文]. 大连: 大连理工大学, 2021. |
[5] | 王浩天, 向巩, 袁在思, 等. 基于改进体积力法的导管螺旋桨水动力性能数值研究[J]. 中国舰船研究, 2023, 18(4): 186-196. |
[6] | 陆德顺, 孙铁志, 张桂勇. 导管螺旋桨水动力特性仿真分析[J]. 船舶, 2023, 34(6): 102-110. |
[7] | 吴家鸣, 赖宇锋, 李江伟, 等. 水下潜器系统导管螺旋桨水动力特性及周围流场分布预报与分析[J]. 船舶力学, 2018, 22(5): 540-551. |
[8] | 李海涛, 姜壮威. 导管螺旋桨水动力性能试验及数值研究[J]. 舰船科学技术, 2024, 46(2): 1-7. |
[9] | Liu, B. and Vanierschot, M. (2021) Numerical Study of the Hydrodynamic Characteristics Comparison between a Ducted Propeller and a Rim-Driven Thruster. Applied Sciences, 11, Article 4919. https://doi.org/10.3390/app11114919 |
[10] | Stark, C. and Shi, W. (2021) Hydroacoustic and Hydrodynamic Investigation of Bio-Inspired Leading-Edge Tubercles on Marine-Ducted Thrusters. Royal Society Open Science, 8, Article 210402. https://doi.org/10.1098/rsos.210402 |