|
先天细胞毒性淋巴细胞在肺癌PD-1/PD-L1抑制剂治疗中的作用
|
Abstract:
免疫治疗是治疗肺癌的重要方式之一。先天毒性淋巴细胞与肺癌免疫治疗的预后相关,在肺癌免疫治疗的患者选择和预后评估中发挥重要作用,可以指导肺癌患者的免疫治疗和管理。本文中,我们简要总结先天细胞毒性淋巴细胞在肺癌免疫调节中的作用,重点关注先天细胞毒性淋巴细胞对肺癌PD-1/PD-L1抑制剂治疗疗效的预测作用。
Immunotherapy is one of the important ways to treat lung cancer. The prevalence of innate cytotoxic lymphocytes is related to the prognosis of lung cancer immunotherapy, and it plays an important role in the selection of patients for lung cancer immunotherapy and the evaluation of prognosis, which can guide the immunotherapy and management of lung cancer patients. In this article, we briefly summarize the role of innate cytotoxic lymphocytes in lung cancer immune regulation and focus on the predictive effect of innate cytotoxic lymphocytes on the efficacy of PD-1/PD-L1 inhibitors in lung cancer.
[1] | Bray, F., Laversanne, M., Sung, H., Ferlay, J., Siegel, R.L., Soerjomataram, I., et al. (2024) Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA: A Cancer Journal for Clinicians, 74, 229-263. https://doi.org/10.3322/caac.21834 |
[2] | Jiang, X., Wang, J., Deng, X., Xiong, F., Ge, J., Xiang, B., et al. (2019) Role of the Tumor Microenvironment in PD-L1/PD-1-Mediated Tumor Immune Escape. Molecular Cancer, 18, Article No. 10. https://doi.org/10.1186/s12943-018-0928-4 |
[3] | 张惠秋, 李西阳, 李西川, 等. 免疫检查点抑制剂在小细胞肺癌治疗中的应用与临床试验进展[J]. 中国肺癌杂志, 2021, 24(11): 790-795. |
[4] | Reck, M., Rodríguez-Abreu, D., Robinson, A.G., Hui, R., Csőszi, T., Fülöp, A., et al. (2016) Pembrolizumab versus Chemotherapy for PD-L1-Positive Non-Small-Cell Lung Cancer. New England Journal of Medicine, 375, 1823-1833. https://doi.org/10.1056/nejmoa1606774 |
[5] | Daud, A.I., Wolchok, J.D., Robert, C., Hwu, W., Weber, J.S., Ribas, A., et al. (2016) Programmed Death-Ligand 1 Expression and Response to the Anti-Programmed Death 1 Antibody Pembrolizumab in Melanoma. Journal of Clinical Oncology, 34, 4102-4109. https://doi.org/10.1200/jco.2016.67.2477 |
[6] | Aguilar, E.J., Ricciuti, B., Gainor, J.F., Kehl, K.L., Kravets, S., Dahlberg, S., et al. (2019) Outcomes to First-Line Pembrolizumab in Patients with Non-Small-Cell Lung Cancer and Very High PD-L1 Expression. Annals of Oncology, 30, 1653-1659. https://doi.org/10.1093/annonc/mdz288 |
[7] | Verma, N.K., Wong, B.H.S., Poh, Z.S., Udayakumar, A., Verma, R., Goh, R.K.J., et al. (2022) Obstacles for T-Lymphocytes in the Tumour Microenvironment: Therapeutic Challenges, Advances and Opportunities Beyond Immune Checkpoint. eBioMedicine, 83, Article 104216. https://doi.org/10.1016/j.ebiom.2022.104216 |
[8] | 齐双月(综述), 刘正娟(审校). 固有免疫在EB病毒感染中的作用研究进展[J]. 国际儿科学杂志, 2023, 50(11): 773-776 |
[9] | Zuo, W. and Zhao, X. (2021) Natural Killer Cells Play an Important Role in Virus Infection Control: Antiviral Mechanism, Subset Expansion and Clinical Application. Clinical Immunology, 227, Article 108727. https://doi.org/10.1016/j.clim.2021.108727 |
[10] | Kronenberg, M. and Engel, I. (2024) NKT Cells in the Antitumor Response: The β Version? Journal of Clinical Investigation, 134, e177663. https://doi.org/10.1172/jci177663 |
[11] | Scheper, W., Sebestyen, Z. and Kuball, J. (2014) Cancer Immunotherapy Using γδT Cells: Dealing with Diversity. Frontiers in Immunology, 5, Article 601. https://doi.org/10.3389/fimmu.2014.00601 |
[12] | Song, Y., Liu, Y., Teo, H.Y. and Liu, H. (2022) Targeting Cytokine Signals to Enhance γδT Cell-Based Cancer Immunotherapy. Frontiers in Immunology, 13, Article 914839. https://doi.org/10.3389/fimmu.2022.914839 |
[13] | Hwang, H.J., Lee, J.J., Kang, S.H., Suh, J.K., Choi, E.S., Jang, S., et al. (2020) The BTLA and PD‐1 Signaling Pathways Independently Regulate the Proliferation and Cytotoxicity of Human Peripheral Blood γδT Cells. Immunity, Inflammation and Disease, 9, 274-287. https://doi.org/10.1002/iid3.390 |
[14] | Zhang, D. and Zhao, Y. (2023) Identification of Natural Killer Cell Associated Subtyping and Gene Signature to Predict Prognosis and Drug Sensitivity of Lung Adenocarcinoma. Frontiers in Genetics, 14, Article 1156230. https://doi.org/10.3389/fgene.2023.1156230 |
[15] | Nelson, A., Lukacs, J.D. and Johnston, B. (2021) The Current Landscape of NKT Cell Immunotherapy and the Hills Ahead. Cancers, 13, Article 5174. https://doi.org/10.3390/cancers13205174 |
[16] | Ma, L., Feng, Y. and Zhou, Z. (2023) A Close Look at Current γδT-Cell Immunotherapy. Frontiers in Immunology, 14, Article 1140623. https://doi.org/10.3389/fimmu.2023.1140623 |
[17] | Legut, M., Cole, D.K. and Sewell, A.K. (2015) The Promise of γδT Cells and the γδT Cell Receptor for Cancer Immunotherapy. Cellular & Molecular Immunology, 12, 656-668. https://doi.org/10.1038/cmi.2015.28 |
[18] | Kim, N. and Kim, H.S. (2018) Targeting Checkpoint Receptors and Molecules for Therapeutic Modulation of Natural Killer Cells. Frontiers in Immunology, 9, Article 2041. https://doi.org/10.3389/fimmu.2018.02041 |
[19] | Hsu, J., Hodgins, J.J., Marathe, M., Nicolai, C.J., Bourgeois-Daigneault, M., Trevino, T.N., et al. (2018) Contribution of NK Cells to Immunotherapy Mediated by PD-1/PD-L1 Blockade. Journal of Clinical Investigation, 128, 4654-4668. https://doi.org/10.1172/jci99317 |
[20] | Cho, Y., Choi, M.G., Kim, D.H., Choi, Y.J., Kim, S.Y., Sung, K.J., et al. (2020) Natural Killer Cells as a Potential Biomarker for Predicting Immunotherapy Efficacy in Patients with Non-Small Cell Lung Cancer. Targeted Oncology, 15, 241-247. https://doi.org/10.1007/s11523-020-00712-2 |
[21] | Kamata, T., Suzuki, A., Mise, N., Ihara, F., Takami, M., Makita, Y., et al. (2016) Blockade of Programmed Death-1/Programmed Death Ligand Pathway Enhances the Antitumor Immunity of Human Invariant Natural Killer T Cells. Cancer Immunology, Immunotherapy, 65, 1477-1489. https://doi.org/10.1007/s00262-016-1901-y |
[22] | Parekh, V.V., Lalani, S., Kim, S., Halder, R., Azuma, M., Yagita, H., et al. (2009) PD-1/PD-L Blockade Prevents Anergy Induction and Enhances the Anti-Tumor Activities of Glycolipid-Activated Invariant NKT Cells. The Journal of Immunology, 182, 2816-2826. https://doi.org/10.4049/jimmunol.0803648 |
[23] | Iyoda, T., Ushida, M., Kimura, Y., Minamino, K., Hayuka, A., Yokohata, S., et al. (2010) Invariant NKT Cell Anergy Is Induced by a Strong TCR-Mediated Signal Plus Co-Stimulation. International Immunology, 22, 905-913. https://doi.org/10.1093/intimm/dxq444 |
[24] | Wang, M., Zhai, X., Li, J., Guan, J., Xu, S., Li, Y., et al. (2021) The Role of Cytokines in Predicting the Response and Adverse Events Related to Immune Checkpoint Inhibitors. Frontiers in Immunology, 12, Article 670391. https://doi.org/10.3389/fimmu.2021.670391 |
[25] | Hu, G., Wu, P., Cheng, P., Zhang, Z., Wang, Z., Yu, X., et al. (2017) Tumor-Infiltrating CD39+γδTregs Are Novel Immunosuppressive T Cells in Human Colorectal Cancer. OncoImmunology, 6, e1277305. https://doi.org/10.1080/2162402x.2016.1277305 |
[26] | Nada, M.H., Wang, H., Hussein, A.J., Tanaka, Y. and Morita, C.T. (2021) PD-1 Checkpoint Blockade Enhances Adoptive Immunotherapy by Human Vγ2Vδ2 T Cells against Human Prostate Cancer. OncoImmunology, 10, Article 1989789. https://doi.org/10.1080/2162402x.2021.1989789 |