全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一例青少年期发病的脊髓小脑性共济失调3型的临床及基因检测分析
Clinical and Genetic Testing Analysis of Spinocerebellar Ataxia Type 3 with Onset in Adolescence

DOI: 10.12677/acm.2024.14123176, PP. 986-991

Keywords: 脊髓小脑性共济失调3型,遗传性痉挛性截瘫,毛细管电泳,高通量测序
Spinocerebellar Ataxia Type 3
, Hereditary Spastic Paraplegia, Capillary Electrophoresis, High-Throughput Sequencing

Full-Text   Cite this paper   Add to My Lib

Abstract:

目的:本研究旨在通过详细报道1例经PCR + 毛细管电泳基因检测确诊的青少年期发病的脊髓小脑性共济失调3型,以增强临床医师对该疾病的诊断认识。方法:分析1例青少年期发病的脊髓小脑性共济失调3型患者的临床资料及两次不同的基因检测结果。结果:先证者为15岁女性,其在15岁时出现共济失调、腱反射亢进等症状。对患者应用高通量测序技术揭示,患者ZFYVE26基因具有c.7487G>A p.Arg2496Gln的杂合突变;此外,通过PCR + 毛细管电泳进行基因检测,发现患者ATXN3基因中CAG重复数目分别是32和80次。结论:本例脊髓小脑型共济失调3型与遗传性痉挛性截瘫表现出一些交叉症状,但PCR + 毛细管电泳基因检测对两种疾病的鉴别诊断具有重要意义。
Objective: The purpose of this study was to report in detail a case of spinocerebellar ataxia type 3 diagnosed by PCR + capillary electrophoresis gene detection, so as to enhance the diagnostic understanding of clinicians. Methods: The clinical data of one adolescent patient with spinocerebellar ataxia type 3 and the results of two different gene tests were analyzed. Results: The proband was a 15-year-old female with ataxia, tendon hyperreflexia and other clinical symptoms. High-throughput sequencing revealed that the ZFYVE26 gene of the patient had A heterozygous mutation of c.7487G>A p.Arg2496Gln. In addition, genetic detection by PCR + capillary electrophoresis showed that the number of CAG repeats in ATXN3 gene was 32 and 80, respectively. Conclusion: There are some cross-symptoms between spinocerebellar ataxia type 3 and hereditary spastic paraplegia in this case, but PCR + capillary electrophoresis is of great significance in the differential diagnosis of the two diseases.

References

[1]  Wu, F., Wang, X., Li, X., Teng, H., Tian, T. and Bai, J. (2020) Spinocerebellar Ataxia Type 23 (SCA23): A Review. Journal of Neurology, 268, 4630-4645.
https://doi.org/10.1007/s00415-020-10297-5
[2]  Li, Q., Cheng, H., Yang, L., Ma, Y., Zhao, J., Dong, Y., et al. (2020) Clinical Features and Genetic Characteristics of Homozygous Spinocerebellar Ataxia Type 3. Molecular Genetics & Genomic Medicine, 8, e1314.
https://doi.org/10.1002/mgg3.1314
[3]  Sullivan, R., Yau, W.Y., O’Connor, E. and Houlden, H. (2018) Spinocerebellar Ataxia: An Update. Journal of Neurology, 266, 533-544.
https://doi.org/10.1007/s00415-018-9076-4
[4]  Chen, Z., Wang, P., Wang, C., Peng, Y., Hou, X., Zhou, X., et al. (2018) Updated Frequency Analysis of Spinocerebellar Ataxia in China. Brain, 141, e22.
https://doi.org/10.1093/brain/awy016
[5]  McLoughlin, H.S., Moore, L.R. and Paulson, H.L. (2020) Pathogenesis of SCA3 and Implications for Other Polyglutamine Diseases. Neurobiology of Disease, 134, Article 104635.
https://doi.org/10.1016/j.nbd.2019.104635
[6]  Coarelli, G., Wirth, T., Tranchant, C., Koenig, M., Durr, A. and Anheim, M. (2022) The Inherited Cerebellar Ataxias: An Update. Journal of Neurology, 270, 208-222.
https://doi.org/10.1007/s00415-022-11383-6
[7]  Lin, H., Chang, Y., Chang, K., Chen, Y. and Lan, M. (2018) Spastic Paraparesis as the First Manifestation of Machado-Joseph Disease: A Case Report and Review of the Literature. Clinical Neurology and Neurosurgery, 172, 137-140.
https://doi.org/10.1016/j.clineuro.2018.06.037
[8]  Meyyazhagan, A. and Orlacchio, A. (2022) Hereditary Spastic Paraplegia: An Update. International Journal of Molecular Sciences, 23, Article 1697.
https://doi.org/10.3390/ijms23031697
[9]  Shi, Y., Wang, A., Chen, B., Wang, X., Niu, S., Li, W., et al. (2022) Clinical Features and Genetic Spectrum of Patients with Clinically Suspected Hereditary Progressive Spastic Paraplegia. Frontiers in Neurology, 13, Article 875927.
https://doi.org/10.3389/fneur.2022.872927
[10]  Leotti, V.B., de Vries, J.J., Oliveira, C.M., de Mattos, E.P., Te Meerman, G.J., Brunt, E.R., et al. (2020) CAG Repeat Size Influences the Progression Rate of Spinocerebellar Ataxia Type 3. Annals of Neurology, 89, 66-73.
https://doi.org/10.1002/ana.25919
[11]  Xuan, J., Yu, Y., Qing, T., Guo, L. and Shi, L. (2013) Next-Generation Sequencing in the Clinic: Promises and Challenges. Cancer Letters, 340, 284-295.
https://doi.org/10.1016/j.canlet.2012.11.025
[12]  Iqbal, Z., Rydning, S.L., Wedding, I.M., Koht, J., Pihlstrøm, L., Rengmark, A.H., et al. (2017) Targeted High Throughput Sequencing in Hereditary Ataxia and Spastic Paraplegia. PLOS ONE, 12, e0174667.
https://doi.org/10.1371/journal.pone.0174667
[13]  Chen, C., Zhao, X. and Kong, X. (2020) Detection and Analysis of Dynamic Variant in a Pedigree Affected with Spinocerebellar Ataxia Type 3. Chinese Journal of Medical Genetics, 37, 1364-1367.
[14]  Liu, Q., Zhang, P., Wang, D., Gu, W. and Wang, K. (2017) Interrogating the “Unsequenceable” Genomic Trinucleotide Repeat Disorders by Long-Read Sequencing. Genome Medicine, 9, Article No. 65.
https://doi.org/10.1186/s13073-017-0456-7
[15]  Cagnoli, C., Brussino, A., Mancini, C., Ferrone, M., Orsi, L., Salmin, P., et al. (2018) Spinocerebellar Ataxia Tethering PCR: A Rapid Genetic Test for the Diagnosis of Spinocerebellar Ataxia Types 1, 2, 3, 6, and 7 by PCR and Capillary Electrophoresis. The Journal of Molecular Diagnostics, 20, 289-297.
https://doi.org/10.1016/j.jmoldx.2017.12.006

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133