全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Effect of the Combining Use of Hydrated Lime and Shea Butter Residue as Stabilizers on the Compressed Earth Blocks Physical, Mechanical, Thermal and Hydric Properties

DOI: 10.4236/ojce.2024.144037, PP. 678-700

Keywords: Compressed Earth Block, Shea Butter Residue, Hydrated Lime, Physical and Mechanical Properties, Thermal Properties, Durability

Full-Text   Cite this paper   Add to My Lib

Abstract:

The use of soil as a construction material is limited due to climatic conditions such as rain and wind effects. The valorization of industrial and agricultural by-products in soil-material-based composites for construction materials is an alternative to producing eco-materials for building construction. This study evaluates the effect of Shea Butter residue (SBr) and hydrated lime (HL) as stabilizers on the performance of Compressed Earth Blocks (CEB). For the production of CEB specimens, firstly the dry mixtures were prepared using soil material and 5 wt% HL, 5% - 25% wt% SBr and secondly, the appropriate amount of water was thoroughly mixed with the dry mixtures using the result of the proctor compaction test. All the moistened mixtures were mechanically pressed into CEBs on mold size (29.5 cm × 14 cm × 9.5 cm), cured at ambient temperature in the lab for 0 - 45 days, and dried at 60?C for 7 days before being tested. The results give for the accessible porosity, bulk density, maximum dry and wet compressive strength, the respective value 31.58%; 1580 kg/cm2; 3.26 MPa and 0.75 MPa for CEB stabilized with 5 wt% lime without SBr. Moreover, the abrasion coefficient (14.49 cm2/g), the mass lost (0.08%), the surface depth (3.25 mm/h), the eroded surface (9.12 cm2), the sorptivity (0.046 g/cm2·min1/2 the absorption by total immersion at 2 h and 24 h (4.06 and 11.94%) are best for the CEBs stabilized with 5/5 wt% HL/SSBr. However, the lower thermal properties were obtained with CEB stabilized with 25 wt% SSBr. We therefore observe the significant reaction between these industrial and agricultural by-products with the earth material, with effects particularly on the hydric, thermal and durability properties. The use of industrial and agricultural by-products such as lime and SBr at an appropriate rate of 5 wt% are suitable to improve CEBs performances.

References

[1]  Nshimiyimana, P. (2020) Effect of the Type of Clay Earthen Materials and Substitution Materials on the Physico-Mechanical Properties and Durability of Compressed Earth Blocks. PhD Thesis, Institut 2iE (Burkina Faso) and Université de Liège (Belgium).
[2]  INSD (2019) Recensement Général de la Population et de l’Habitat.
[3]  Poullain, P., Leklou, N., Laibi, A. and Gomina, M. (2019) Properties of Compressed Earth Blocks Made of Traditional Materials from Benin. Revue des composites et des matériaux avancés, 29, 233-241.
https://doi.org/10.18280/rcma.290407
[4]  Antonelli, J.F.C. and Azambuja, M.d.A. (2021) Analysis of the Current Scenario of Compressed Earth Block (CEB) Production. Revista Nacional de Gerenciamento de Cidades, 9, 60-76.
https://doi.org/10.17271/2318847297320213011
[5]  Laibi, B.A. (2012) Comportement hygro-thermo-mécanique de matériaux structuraux pour la construction associant des fibres de kénaf à des terres argileuses. Ph.D. Thesis, Normandie Université.
[6]  Islam, M.S., Tausif-E-Elahi, Shahriar, A.R., Nahar, K. and Hossain, T.R. (2020) Strength and Durability Characteristics of Cement-Sand Stabilized Earth Blocks. Journal of Materials in Civil Engineering, 32, Article ID: 04020087.
https://doi.org/10.1061/(asce)mt.1943-5533.0003176
[7]  Maniatidis, V. and Walker, P. (2003) A Review of Rammed Earth Construction for DTi Partners in Innovation Project ‘Developing Rammed Earth for UK Housing’. University of Bath, 109 p.
[8]  Alassaad, F. (2022) Stοckage d’énergie thermique dans des envelοppes hygrοscοpiques à base de matériaux biοsοurcés. Thèse de doctorat, Université de Caen Normandie.
[9]  Sory, N., Ouedraogo, M., Messan, A., Sanou, I., Sawadogo, M., Jeremy Ouedraogo, K., et al. (2022) Mechanical, Thermal and Hydric Behavior of the Bio-Sourced Compressed Earth Block (B-CEB) Added to Peanut Shells Powder. Advances in Materials, 11, 1-13.
https://doi.org/10.11648/j.am.20221101.11
[10]  Irani, N. and Ghasemi, M. (2020) Effects of the Inclusion of Industrial and Agricultural Wastes on the Compaction and Compression Properties of Untreated and Lime-Treated Clayey Sand. SN Applied Sciences, 2, Article No. 1660.
https://doi.org/10.1007/s42452-020-03369-8
[11]  Soumaila, B., Koné, B., Honore, K.C. and Alex, M.K. (2022) Caracterisation et Renforcement des Proprietes Geotechniques des Briques de Terre avec Rajout de Paille du Riz. European Scientific Journal ESJ, 8, 230-243.
https://doi.org/10.19044/esipreprint.8.2022.p230
[12]  Zoma, F., Yonli, F.H., Malbila, E., Toguyeni, D.Y.K. and Hassel, I.B. (2020) Adding Hydrated Lime in a Material Made of Clayey Soil and Fibres: Formulation and Effects on Thermo-Mechanical Properties. Journal of Minerals and Materials Characterization and Engineering, 8, 149-161.
https://doi.org/10.4236/jmmce.2020.83010
[13]  Ferreira, G., Cecchin, D. and de Azevedo, A. (2021) Bibliometric Analysis on the Use of Natural Fibers in Construction Materials. Agronomy Research, 19, 1455-1466.
[14]  Millogo, Y., Aubert, J.E., Séré, A.D., Fabbri, A. and Morel, J.C. (2016) Earth Blocks Stabilized by Cow-Dung. Materials and Structures, 49, 4583-4594.
[15]  Seevaratnam, V., Uthayakumar, D. and Sathiparan, N. (2020) Influence of Rice Husk Ash on Characteristics of Earth Cement Blocks. MRS Advances, 5, 2793-2805.
https://doi.org/10.1557/adv.2020.294
[16]  Rajput, A. and Sharma, T. (2023) Stabilization of Csebs with the Addition of Industrial and Agricultural Wastes. IOP Conference Series: Earth and Environmental Science, 1110, Article ID: 012004.
https://doi.org/10.1088/1755-1315/1110/1/012004
[17]  Dime, T., Sore, S.O., Nshimiyimana, P., Messan, A. and Courard, L. (2022) Comparative Study of the Reactivity of Clay Earth Materials for the Production of Compressed Earth Blocks in Ambient Conditions: Effect on Their Physico-Mechanical Performances. Journal of Minerals and Materials Characterization and Engineering, 10, 43-56.
https://doi.org/10.4236/jmmce.2022.101004
[18]  Nshimiyimana, P., Messan, A. and Courard, L. (2020) Physico-Mechanical and Hygro-Thermal Properties of Compressed Earth Blocks Stabilized with Industrial and Agro By-Product Binders. Materials, 13, Article 3769.
https://doi.org/10.3390/ma13173769
[19]  Valenzuela, M., Ciudad, G., Cárdenas, J.P., Medina, C., Salas, A., Oñate, A., et al. (2024) Towards the Development of Performance-Efficient Compressed Earth Blocks from Industrial and Agro-Industrial By-Products. Renewable and Sustainable Energy Reviews, 194, Article ID: 114323.
https://doi.org/10.1016/j.rser.2024.114323
[20]  Bailly, G.C., El Mendili, Y., Konin, A. and Khoury, E. (2024) Advancing Earth-Based Construction: A Comprehensive Review of Stabilization and Reinforcement Techniques for Adobe and Compressed Earth Blocks. Eng, 5, 750-783.
https://doi.org/10.3390/eng5020041
[21]  Mahdad, M., Brara, A. and Ait Said, S. (2014) Caractérisation hydromécanique des blocs de terre stabilisée au ciment et à la chaux. Colloque International Défis et Perspectives de lHabitat en Algérie: Comprendre Pour Mieux Agir, Tizi Ouzou, 19-20 Novembre 2014, 11.
[22]  Bobet, O., Seynou, M., Zerbo, L., Bamogo, H., Sanou, I. and Sawadogo, M. (2020) Propriétés mécanique, hydrique et thermique de briques en terre crue amendées aux coques d’arachide. Journal de la Société Ouest-Africaine de Chimie, 49, 54-64.
[23]  Malbila, E., Delvoie, S., Toguyeni, D., Attia, S. and Courard, L. (2020) An Experimental Study on the Use of Fonio Straw and Shea Butter Residue for Improving the Thermophysical and Mechanical Properties of Compressed Earth Blocks. Journal of Minerals and Materials Characterization and Engineering, 8, 107-132.
https://doi.org/10.4236/jmmce.2020.83008
[24]  Malbila, E., Toguyeni, D.Y., Bamogo, S., Lawane, A. and Koulidiati, J. (2018) Thermophysical and Mechanical Characterization of Local Stabilized Materials Suitable for Buildings in Dry and Hot Climate. Journal of Materials Science & Surface Engineering, 6, 767-772.
[25]  Malkanthi, S.N., Balthazaar, N. and Perera, A.A.D.A.J. (2020) Lime Stabilization for Compressed Stabilized Earth Blocks with Reduced Clay and Silt. Case Studies in Construction Materials, 12, e00326.
https://doi.org/10.1016/j.cscm.2019.e00326
[26]  Kassamba, B., Yameogo, R.T. and Traoré, A.S. (2007) Blanchiment du beurre de karité: Optimisation des paramètres. Science et Technique,Sciences appliquées et Technologies, 1, 13-20.
[27]  Megnanou, R. and Diopoh, K. (2009) Caracterisation Sensorielle, Physico-Chimique Et Microbiologique Du Beurre De Karite, Vitellaria paradoxa Des Marches De Cote D’Ivoire. Agronomie Africaine, 20, 221-231.
https://doi.org/10.4314/aga.v20i2.1747
[28]  Noumi, E.S., Dabat, M.H. and Blin, J. (2012) Développement durable de la transformation traditionnelle du karite en valorisant énergétiquement les résidus organiques. Colloque International Francophone dEnergetique et MecaniqueCIFEM 2012, Ouagadougou, Burkina Faso, 2-4 Mai 2012, 239-245.
[29]  Akakpo, K.A. (2022) Valorisation des effluents de karité et étude des sous-produits Karité. NITIDAE Filières et Territoires.
[30]  Union des sociétés Coopératives Boud Nooma (USCOOP-BN) (2020) Valorisation des tourteaux d’amandes de karité en combustible: une alternative écologique et économique aux bois de chauffe.
[31]  Djinsi Vaïmata, G., Djakba, R., Dobe, N., MadiBalo, A., Kaze, R.C., Boughzala, H., et al. (2024) The Effect of Combining Rice Husk Ash with Laterite-Based Inorganic Polymers Activated by Potassium-Rich Shea Pellet Ash. Sustainable Chemistry and Pharmacy, 39, Article ID: 101607.
https://doi.org/10.1016/j.scp.2024.101607
[32]  Idriss, E., Tome, S., Rolande Aurelie, T.K., Nana, A., Nemaleu, J.G.D., Judicaёl, C., et al. (2022) Engineering and Structural Properties of Compressed Earth Blocks (CEB) Stabilized with a Calcined Clay-Based Alkali-Activated Binder. Innovative Infrastructure Solutions, 7, Article No. 157.
https://doi.org/10.1007/s41062-022-00760-9
[33]  Hantaniaina, R., Miravo Finarit, R.K., Jean de Dieu, R. and Antoine, A.P. (2023) Contribution A L’Etude Des Briques De Terre Comprimées Et Stabilisées Par Le Mélange Chaux—Ciment Sur La Satisfaction Des Occupants Dans Les Résidences Modernes Durables Naturellement Ventilées En Zone Tropicale «Cas De L’Ile De Madagascar». International Journal of Progressive Sciences and Technologies, 39, 226-234.
https://doi.org/10.52155/ijpsat.v39.1.5396
[34]  Davou, L. (2020) Procédé de production de beurre de karité.
[35]  (2012) NF EN 933-1 Essais pour déterminer les caractéristiques géométriques des granulats—Partie 1: Détermination de la granularité—Analyse granulométrique par tamisage. AFNOR Edition.
[36]  (2018) NF EN ISO 17892-4 Reconnaissance et essais géotechniques—Essais de laboratoire sur les sols—Partie 4: Détermination de la distribution granulométrie des particules. AFNOR Edition.
[37]  (1992) NF P11-300_Exécution des terrassements—Classification des matériaux utilisables dans la construction des remblais et des couches de forme d’infrastructures routières. AFNOR Edition.
[38]  (2022) NF EN 1097-7_Essais pour déterminer les caractéristiques mécaniques et physiques des granulats—Partie 7: Détermination de la masse volumique réelle du filler—Méthode au picnomètre. AFNOR Edition.
[39]  (2014) NF P94-093_Sols: Reconnaissance et essais—Détermination des références de compactage d’un matériau—Essai Proctor Normal—Essai Proctor modifié. AFNOR Edition.
[40]  Wolf, R. and Castera-Rossignol, A. (1987) Mise au point d’une méthode d’extraction de la matière grasse de fromage de type Emmental. Revue francaise des corps gras, 34, 123-132.
[41]  Traoré, Y.B. (2013) Fluence d’Adjuvants Naturels Sur Les Propriétés Physico-Mécaniques des BTCs: Cas du néré et du karité. Mémoire de Master, Institut 2iE, Ouagadougou, Burkina Faso.
[42]  Nshimiyimana, P., Messan, A. and Courard, L. (2021) Hydric and Durability Performances of Compressed Earth Blocks Stabilized with Industrial and Agro By-Product Binders: Calcium Carbide Residue and Rice Husk Ash. Journal of Materials in Civil Engineering, 33, Article ID: 04021121.
https://doi.org/10.1061/(asce)mt.1943-5533.0003745
[43]  Nshimiyimana, P., Miraucourt, D., Messan, A. and Courard, L. (2018) Calcium Carbide Residue and Rice Husk Ash for Improving the Compressive Strength of Compressed Earth Blocks. MRS Advances, 3, 2009-2014.
https://doi.org/10.1557/adv.2018.147
[44]  Tidjani, K.F. (2021) Stabilité des géomatériaux associés à des adjuvants organiques: Cas de la décoction de Néré et de karité. Mémoire d’Ingénieur de conception, Ecole Polytechnique d’Abomey-Calavi, Benin.
[45]  Nshimiyimana, P., Moussa, H.S., Messan, A. and Courard, L. (2020) Effect of Production and Curing Conditions on the Performance of Stabilized Compressed Earth Blocks: Kaolinite vs Quartz-Rich Earthen Material. MRS Advances, 5, 1277-1283.
https://doi.org/10.1557/adv.2020.155
[46]  Association Francaise de Normalisation (2010) NF P 18-459 Essai Pour Béton Durci-Essai de Porosité et de Masse Volumique; Association Francaise de Normalisation.
[47]  (2022) XP P13-901-Briques et Blocs de terre crue pour murs et cloisons—Définitions—Spécification—Méthodes d’essai—Conditions de réception. AFNOR Edition.
[48]  (2013) NF EN 14617-1 Pierre agglomérée—Méthodes d’essai—Partie 1: Détermination de la masse volumique apparente et du coefficient d’absorption d’eau. AFNOR Edition.
[49]  (1998) NZS 4297: 1998, Engineering Design of Earth Buildings [Building Code Compliance Documents B1(VM1), B2 (AS1)]. New Zealand.
https://www.standards.co.nz/
[50]  (1996) ARS 680: Compressed Earth Blocks—Code of Practice for the Production of Compressed Earth Blocks. Centre for the Development of Industry ACP-UE, CRATerre-EAG BASIN.
[51]  Guillaud, H., Joffroy, T. and Odul, P. (1995) CRATerre-EAG, Blocs de terre comprimée, volume 2. Manuel de conception et de construction. [Compressed Earth Blocks, Volume 2. Design and Construction Manual.] GATE-GTZ & Building Advisory Service and Information Network.
[52]  Driss, A.A.E., Harichane, K. and Ghrici, M. (2018) Effet de la chaux sur la stabilisation des propriétés géotechniques d’un sol argileux. 8ème Symposium international sur la construction en zone sismique, Chlef, 10-11 Octobre 2018, 1.
[53]  Ouedraogo, L.A.S.N. (2012) Etudes des briques de terre comprimée-BTC stabilisée à la chaux des sols de Dori: Application. Mémoire de Master, Institut 2IE, Ouagadougou, Burkina Faso.
[54]  Sakine, B.Y. (2011) Vérification des caractéristiques des BTC stabilisées avec la chaux. Mémoire de Master, Institut 2iE, Ouagadougou, Burkina Faso.
[55]  (1996) ARS 674 Compressed Earth Blocks—Technical Specifications for Ordinary Compressed Earth Blocks. Centre for the Development of Industry ACP-UE, CRATerre-EAG BASIN.
[56]  (1996) ARS 675_Compressed Earth Blocks—Technical Specifications for Facing Compressed Earth Blocks. Centre for the Development of Industry ACP-UE, CRATerre-EAG BASIN.
[57]  Obonyo, E., Exelbirt, J. and Baskaran, M. (2010) Durability of Compressed Earth Bricks: Assessing Erosion Resistance Using the Modified Spray Testing. Sustainability, 2, 3639-3649.
https://doi.org/10.3390/su2123639
[58]  (2020) NZS 4298_Materials and Construction for Earth Buildings. New Zealand.
https://www.standards.co.nz/
[59]  Izemmouren, O., Guettala, A. and Guettala, S. (2015) Mechanical Properties and Durability of Lime and Natural Pozzolana Stabilized Steam-Cured Compressed Earth Block Bricks. Geotechnical and Geological Engineering, 33, 1321-1333.
https://doi.org/10.1007/s10706-015-9904-6
[60]  Bogas, J.A., Silva, M. and Glória Gomes, M. (2018) Unstabilized and Stabilized Compressed Earth Blocks with Partial Incorporation of Recycled Aggregates. International Journal of Architectural Heritage, 13, 569-584.
https://doi.org/10.1080/15583058.2018.1442891

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133