Antioxidant, Antifungal and Antitermite Activities of Residues from Hydrodistillation of Cymbopogon citratus, Eucalyptus camaldulensis and Mentha piperita
Aromatic plant distillation produces residues rich in phenolic compounds known to be bioactive. In this context, residues from the hydrodistillation of Mentha piperita L., Cymbopogon citratus Stapf, and Eucalyptus camaldulensis Dehnh were chemically and biologically analyzed. The ethanol percentages (70%, 50%, and 30%) were evaluated by determining antioxidant activity using 2,2-diphenyl-1-picryl-hydrazyl (DPPH) radical scavenging, total phenolic content, and total flavonoid content. Antifungal activity was evaluated “in vitro” against Fusarium oxysporum, Alternaria alternata, Trametes versicolor, and Coniophora puteana using the diffusion method in malt-agar medium. Antitermite activity was also assessed against Reticulitermes flavipes using the most active extract with low ethanol concentrations (50% and 30%). The optimum ethanol concentration to extract phenolic compounds is 70% for TFC and 30% for TPC, and the antioxidant activity was 0.45 ± 0.01 mg/mL (IC50). The most active extracts were the ethanolic ones, particularly for Eucalyptus camaldulensis, presenting 100% inhibition against the mycelial growth of Coniophora puteana and Alternaria alternata at 1 mg/mL and 0.5 mg/mL, respectively. For antitermite activity, EE50 was the most effective, with a 24% termite survival rate and a degraded food supply surface of 28%. These data suggest the potential use of hydrodistillation residues for biopesticide development.
References
[1]
Ayilara, M.S., Adeleke, B.S., Akinola, S.A., Fayose, C.A., Adeyemi, U.T., Gbadegesin, L.A., etal. (2023) Biopesticides as a Promising Alternative to Synthetic Pesticides: A Case for Microbial Pesticides, Phytopesticides, and Nanobiopesticides. FrontiersinMicrobiology, 14, Article 1040901. https://doi.org/10.3389/fmicb.2023.1040901
[2]
Ortiz de Elguea-Culebras, G., Sánchez-Vioque, R., Santana-Méridas, O., Herraiz-Peñalver, D., Carmona, M. and Berruga, M.I. (2016) InVitro Antifungal Activity of Residues from Essential Oil Industry against Penicillium verrucosum, a Common Contaminant of Ripening Cheeses. LWT, 73, 226-232. https://doi.org/10.1016/j.lwt.2016.06.008
[3]
Sankara, A., Ouédraogo, J.C.W., Pignolet, L., Thévenon, M. and Bonzi-Coulibaly, Y.L. (2020) Chemical Profiles and Anti-Termite Activity of Hydrodistillation Residues from Three Aromatic Plants Acclimated in Burkina Faso. JournalofAgriculturalScience, 12, 245-256. https://doi.org/10.5539/jas.v12n8p245
[4]
Santana-Méridas, O., Polissiou, M., Izquierdo-Melero, M.E., Astraka, K., Tarantilis, P.A., Herraiz-Peñalver, D., etal. (2014) Polyphenol Composition, Antioxidant and Bioplaguicide Activities of the Solid Residue from Hydrodistillation of Rosmarinusofficinalis L. IndustrialCropsandProducts, 59, 125-134. https://doi.org/10.1016/j.indcrop.2014.05.008
[5]
Sánchez-Vioque, R., Izquierdo-Melero, M.E., Polissiou, M., Astraka, K., Tarantilis, P.A., Herraiz-Peñalver, D., et al. (2015) Comparative Chemistry and Biological Properties of the Solid Residues from Hydrodistillation of Spanish Populations of Rosmarinusofficinalis L. GrasasyAceites, 66, e079. https://doi.org/10.3989/gya.1060142
Mori, N.C., Horn, R.C., Oliveira, C., Gelatti, G.T., Klafke, J.Z., Tissiani, A.C., etal. (2017) Effect of the Cymbopogon Citratus Infusion on the Activity of Acetylcholinesterase Enzyme and on the Redox Profile in Farmers’ Erythrocytes. JournalofAgriculturalScience, 9, 68-77. https://doi.org/10.5539/jas.v9n9p68
[8]
Negrelle, R.R.B. and Gomes, E.C. (2007) Cymbopogon citratus (DC.) Stapf: Chemical Composition and Biological Activities. Brazilian Journal of Medical and Biological Research, 9, 80-92.
[9]
Ilboudo, O., Bonzi, S., Tapsoba, I., Somda, I. and Bonzi-Coulibaly, Y.L. (2016) InVitro Antifungal Activity of Flavonoid Diglycosides of Menthapiperita and Their Oxime Derivatives against Two Cereals Fungi. ComptesRendus.Chimie, 19, 857-862. https://doi.org/10.1016/j.crci.2015.11.023
[10]
Ghareeb, M.A., Habib, M.R., Mossalem, H.S. and Abdel-Aziz, M.S. (2018) Phytochemical Analysis of Eucalyptuscamaldulensis Leaves Extracts and Testing Its Antimicrobial and Schistosomicidal Activities. BulletinoftheNationalResearchCentre, 42, Article No. 16. https://doi.org/10.1186/s42269-018-0017-2
[11]
Ouattara, B., Semay, I., Ouédraogo, J.C.W., Gerbaux, P. and Ouédraogo, I.W.K. (2023) Optimization of the Extraction of Phenolic Compounds from Eucalyptuscamaldulensis Dehnh Leaves Using Response Surface Methodology. ChemistryAfrica, 7, 1251-1267. https://doi.org/10.1007/s42250-023-00821-1
[12]
Abu-Jafar, A. and Huleihel, M. (2017) Antiviral Activity of Eucalyptuscamaldulensis Leaves Ethanolic Extract on Herpes Viruses Infection. International Journal of Virology, 1, 1-9. https://doi.org/https:/doi.org/10.29328/journal.ijcv
[13]
Ghasemian, A., Eslami, M., Hasanvand, F., Bozorgi, H. and Al-abodi, H.R. (2019) Eucalyptuscamaldulensis Properties for Use in the Eradication of Infections. ComparativeImmunology, MicrobiologyandInfectiousDiseases, 65, 234-237. https://doi.org/10.1016/j.cimid.2019.04.007
[14]
Pinta, M. (1980) Spectrométrie d’absorption Atomique Application à l’analyse Chimique. 2ième Édition, Masson et Cle.
[15]
Singleton, V.L., Orthofer, R. and Lamuela-Raventós, R.M. (1999) Analysis of Total Phenols and Other Oxidation Substrates and Antioxidants by Means of Folin-Ciocalteu Reagent. MethodsinEnzymology, 299, 152-178. https://doi.org/10.1016/s0076-6879(99)99017-1
[16]
Woisky, R.G. and Salatino, A. (1998) Analysis of Propolis: Some Parameters and Procedures for Chemical Quality Control. JournalofApiculturalResearch, 37, 99-105. https://doi.org/10.1080/00218839.1998.11100961
[17]
Miliauskas, G., Venskutonis, P.R. and van Beek, T.A. (2004) Screening of Radical Scavenging Activity of Some Medicinal and Aromatic Plant Extracts. FoodChemistry, 85, 231-237. https://doi.org/10.1016/j.foodchem.2003.05.007
[18]
Ohtani, Y., Hazama, M. and Sameshima, K. (1997) Crucial Chemical Factors of the Termiticidal Activity of Hinoki Wood (Chamaecyparis obtusa) III. Termiticidal Extractives from Hinoki Wood. MokuzaiGakkaishi, 43, 1022-1029.
[19]
Dakole, D.C., Nguefack, J., Dongmo, L.J.B., Galani, Y.J.H., Azah, U.R., Somda, I. and Amvam, Z.P.H. (2016) Antifungal Potential of Essential Oils, Aqueous and Ethanol Extracts of Thirteen Plants against Fusariumoxysporumf.sp. lycopersici and Phytophtorainfestans (Mont.) de Bary as Major Tomato Pathogens in Cameroon. International Journal of Current Science, 19, 128-145.
[20]
Jahan, M., Warsi, M.K. and Khatoon, F. (2011) Studies on Antibacterial Property of Eucalyptus—The Aromatic Plant. International Journal of Pharmaceutical Sciences Review and Research, 7, 86-88.
Shafique, S., Shafique, S. and Ahmed, A. (2017) Defense Response of Eucalyptuscamaldulensis against Black Spot Pathogen of Pisum Sativum. SouthAfricanJournalofBotany, 113, 428-436. https://doi.org/10.1016/j.sajb.2017.09.021
[23]
Tiendrebeogo, A., Ouedraogo, I., Bonzi, S. and Kassankogno, A.I. (2017) Etude de l’activité antifongique d’extraits de Cymbopogon citratus (DC.) Stap, Ecliptaalba L., Lippiamultiflora M. et Agavesisalana P. InternationalJournalofBiologicalandChemicalSciences, 11, 1202-1211. https://doi.org/10.4314/ijbcs.v11i3.22
[24]
Fernández-Agulló, A., Freire, M.S. and González-Álvarez, J. (2015) Effect of the Extraction Technique on the Recovery of Bioactive Compounds from Eucalyptus (Eucalyptus globulus) Wood Industrial Wastes. IndustrialCropsandProducts, 64, 105-113. https://doi.org/10.1016/j.indcrop.2014.11.031
[25]
Mohammed, A.E. (2015) Green Synthesis, Antimicrobial and Cytotoxic Effects of Silver Nanoparticles Mediated by Eucalyptuscamaldulensis Leaf Extract. AsianPacificJournalofTropicalBiomedicine, 5, 382-386. https://doi.org/10.1016/s2221-1691(15)30373-7
[26]
Cai, H., Tao, N. and Guo, C. (2020) Systematic Investigation of the Effects of Macro-Elements and Iron on Soybean Plant Response to Fusariumoxysporum Infection. ThePlantPathologyJournal, 36, 398-405. https://doi.org/10.5423/ppj.oa.04.2020.0069
[27]
Haryuni, H., Harahap, A.F.P., Supartini,, Priyatmojo, A. and Gozan, M. (2020) The Effects of Biopesticide and fusariumoxysporum f.sp. vanillae on the Nutrient Content of Binucleate Rhizoctonia-Induced Vanilla Plant. InternationalJournalofAgronomy, 2020, Article ID: 5092893. https://doi.org/10.1155/2020/5092893
[28]
Gullón, B., Lú-Chau, T.A., Moreira, M.T., Lema, J.M. and Eibes, G. (2017) Rutin: A Review on Extraction, Identification and Purification Methods, Biological Activities and Approaches to Enhance Its Bioavailability. TrendsinFoodScience&Technology, 67, 220-235. https://doi.org/10.1016/j.tifs.2017.07.008
[29]
Membang, G., Tchotet Tchoumi, J.M., Ntsomboh Ntsefong, G., Mba Ela, E.Y., Dida Lontsi, S.L., Tchuenkam Tsango, L., etal. (2024) Assessing the Efficacy of Lemongrass (Cymbopogon citratus) and Sambong (Blumeabalsamifera) Extracts in Combating Black Pod Disease: Sustainable Solutions for Controlling Phytophthoramegakarya in Cameroon’s Cocoa Plantations. AmericanJournalofPlantSciences, 15, 519-537. https://doi.org/10.4236/ajps.2024.157036
[30]
Hussain, S., Zahid, A., Imran, M., Massey, S., Riaz, M., Sagir, M., etal. (2024) Unveiling the Chemical Profile, Synergistic Antibacterial and Hemolytic Effects of Cymbopogon citratus and Tachyspermum ammi Leaves. BiocatalysisandAgriculturalBiotechnology, 58, Article ID: 103221. https://doi.org/10.1016/j.bcab.2024.103221