全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Mesenchymal Stem Cell-Derived Secretome-Based Therapy for Neurological Disorders: A Scoping Review

DOI: 10.4236/scd.2024.141001, PP. 1-19

Keywords: Neurological Disorders, Mesenchymal Stem Cells, Exosomes, Extracellular Vesicles, Stem Cell Therapy

Full-Text   Cite this paper   Add to My Lib

Abstract:

Stem cells are the foundation of cellular therapy. They are multipotent cells capable of self-renewing and differentiating into several cell lineages. They are being investigated and used for the treatment of a wide range of diseases. There are various stem cell types and sources, with mesenchymal stem cells standing out as one noteworthy example. With neurological disorders being a major cause of deaths and disabilities worldwide, ongoing studies are investigating the therapeutic potential of mesenchymal stem cells for treating neuropathies. This review comprehensively outlines various neurological diseases and explores the therapeutic potential of mesenchymal stem cells in ischemic stroke, multiple sclerosis, ALS, Alzheimer’s, hypoxia, and glioblastoma. However, there are challenges and limitations in mesenchymal stem cell-based therapies, including concerns about immunocompatibility, maintenance of stemness and differentiation stability, and the potential risk of tumor formation.

References

[1]  Alessandrini, M., Preynat-Seauve, O., De Briun, K. and Pepper, M.S. (2019) Stem Cell Therapy for Neurological Disorders. South African Medical Journal, 109, 70-77.
https://doi.org/10.7196/samj.2019.v109i8b.14009
[2]  Jiang, C., Lin, L., Long, S., Ke, X., Fukunaga, K., Lu, Y., et al. (2022) Signalling Pathways in Autism Spectrum Disorder: Mechanisms and Therapeutic Implications. Signal Transduction and Targeted Therapy, 7, Article No. 229.
https://doi.org/10.1038/s41392-022-01081-0
[3]  Steinruecke, M., Mason, I., Keen, M., McWhirter, L., Carson, A.J., Stone, J., et al. (2024) Pain and Functional Neurological Disorder: A Systematic Review and Meta-Analysis. Journal of Neurology, Neurosurgery & Psychiatry, 95, 874-885.
https://doi.org/10.1136/jnnp-2023-332810
[4]  Bhagavati, S. (2021) Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. Frontiers in Neurology, 12, Article 664664.
https://doi.org/10.3389/fneur.2021.664664
[5]  Bonanni, R., Cariati, I., Tarantino, U., D’Arcangelo, G. and Tancredi, V. (2022) Physical Exercise and Health: A Focus on Its Protective Role in Neurodegenerative Diseases. Journal of Functional Morphology and Kinesiology, 7, Article 38.
https://doi.org/10.3390/jfmk7020038
[6]  Simmons, S.B., Skolaris, A., Love, R., Fricker, T., Penko, A.L., Li, Y., et al. (2024) Intensive Aerobic Cycling Is Feasible and Elicits Improvements in Gait Velocity in Individuals with Multiple Sclerosis: A Preliminary Study. International Journal of MS Care, 26, 119-124.
https://doi.org/10.7224/1537-2073.2023-042
[7]  Xunian, Z. and Kalluri, R. (2020) Biology and Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes. Cancer Science, 111, 3100-3110.
https://doi.org/10.1111/cas.14563
[8]  Babaei, H., Kheirollah, A., Ranjbaran, M., Cheraghzadeh, M., Sarkaki, A. and Adelipour, M. (2023) Preconditioning Adipose-Derived Mesenchymal Stem Cells with Dimethyl Fumarate Promotes Their Therapeutic Efficacy in the Brain Tissues of Rats with Alzheimer’s Disease. Biochemical and Biophysical Research Communications, 672, 120-127.
https://doi.org/10.1016/j.bbrc.2023.06.045
[9]  Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., et al. (2022) The Secretion Profile of Mesenchymal Stem Cells and Potential Applications in Treating Human Diseases. Signal Transduction and Targeted Therapy, 7, Article No. 92.
https://doi.org/10.1038/s41392-022-00932-0
[10]  Ohori-Morita, Y., Niibe, K., Limraksasin, P., Nattasit, P., Miao, X., Yamada, M., et al. (2022) Novel Mesenchymal Stem Cell Spheroids with Enhanced Stem Cell Characteristics and Bone Regeneration Ability. Stem Cells Translational Medicine, 11, 434-449.
https://doi.org/10.1093/stcltm/szab030
[11]  Kulus, M., Sibiak, R., Stefańska, K., Zdun, M., Wieczorkiewicz, M., Piotrowska-Kempisty, H., et al. (2021) Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues—Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells, 10, Article 3278.
https://doi.org/10.3390/cells10123278
[12]  Giovannelli, L., Bari, E., Jommi, C., Tartara, F., Armocida, D., Garbossa, D., et al. (2023) Mesenchymal Stem Cell Secretome and Extracellular Vesicles for Neurodegenerative Diseases: Risk-Benefit Profile and Next Steps for the Market Access. Bioactive Materials, 29, 16-35.
https://doi.org/10.1016/j.bioactmat.2023.06.013
[13]  Ferreira, J.R., Teixeira, G.Q., Santos, S.G., Barbosa, M.A., Almeida-Porada, G. and Gonçalves, R.M. (2018) Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-Conditioning. Frontiers in Immunology, 9, Article 2837.
https://doi.org/10.3389/fimmu.2018.02837
[14]  Laloze, J., Lacoste, M., Marouf, F., Carpentier, G., Vignaud, L., Chaput, B., et al. (2023) Specific Features of Stromal Cells Isolated from the Two Layers of Subcutaneous Adipose Tissue: Roles of Their Secretion on Angiogenesis and Neurogenesis. Journal of Clinical Medicine, 12, Article 4214.
https://doi.org/10.3390/jcm12134214
[15]  Lamptey, R.N.L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B. and Singh, J. (2022) A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. International Journal of Molecular Sciences, 23, Article 1851.
https://doi.org/10.3390/ijms23031851
[16]  Jia, Y., Yu, L., Ma, T., Xu, W., Qian, H., Sun, Y., et al. (2022) Small Extracellular Vesicles Isolation and Separation: Current Techniques, Pending Questions and Clinical Applications. Theranostics, 12, 6548-6575.
https://doi.org/10.7150/thno.74305
[17]  Yari, H., Mikhailova, M.V., Mardasi, M., Jafarzadehgharehziaaddin, M., Shahrokh, S., Thangavelu, L., et al. (2022) Emerging Role of Mesenchymal Stromal Cells (MSCs)-Derived Exosome in Neurodegeneration-Associated Conditions: A Groundbreaking Cell-Free Approach. Stem Cell Research & Therapy, 13, Article No. 423.
https://doi.org/10.1186/s13287-022-03122-5
[18]  Goenka, V., Borkar, T., Desai, A. and Das, R.K. (2020) Therapeutic Potential of Mesenchymal Stem Cells in Treating Both Types of Diabetes Mellitus and Associated Diseases. Journal of Diabetes & Metabolic Disorders, 19, 1979-1993.
https://doi.org/10.1007/s40200-020-00647-5
[19]  Miceli, V., Bulati, M., Iannolo, G., Zito, G., Gallo, A. and Conaldi, P.G. (2021) Therapeutic Properties of Mesenchymal Stromal/Stem Cells: The Need of Cell Priming for Cell-Free Therapies in Regenerative Medicine. International Journal of Molecular Sciences, 22, Article 763.
https://doi.org/10.3390/ijms22020763
[20]  Yang, J. and Liu, Z. (2022) Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Frontiers in Endocrinology, 13, Article 816400.
https://doi.org/10.3389/fendo.2022.816400
[21]  Zang, L., Hao, H., Liu, J., Li, Y., Han, W. and Mu, Y. (2017) Mesenchymal Stem Cell Therapy in Type 2 Diabetes Mellitus. Diabetology & Metabolic Syndrome, 9, Article No. 36.
https://doi.org/10.1186/s13098-017-0233-1
[22]  Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., et al. (2021) Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. Signal Transduction and Targeted Therapy, 6, Article No. 263.
https://doi.org/10.1038/s41392-021-00658-5
[23]  Fuloria, S., Subramaniyan, V., Dahiya, R., Dahiya, S., Sudhakar, K., Kumari, U., et al. (2021) Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. Biology, 10, Article 172.
https://doi.org/10.3390/biology10030172
[24]  Shandil, R.K., Dhup, S. and Narayanan, S. (2022) Evaluation of the Therapeutic Potential of Mesenchymal Stem Cells (MSCs) in Preclinical Models of Autoimmune Diseases. Stem Cells International, 2022, Article ID: 6379161.
https://doi.org/10.1155/2022/6379161
[25]  Bullock, J., Rizvi, S.A.A., Saleh, A.M., Ahmed, S.S., Do, D.P., Ansari, R.A., et al. (2018) Rheumatoid Arthritis: A Brief Overview of the Treatment. Medical Principles and Practice, 27, 501-507.
https://doi.org/10.1159/000493390
[26]  Huo, J., Feng, Q., Pan, S., Fu, W., Liu, Z. and Liu, Z. (2023) Diabetic Cardiomyopathy: Early Diagnostic Biomarkers, Pathogenetic Mechanisms, and Therapeutic Interventions. Cell Death Discovery, 9, Article No. 256.
https://doi.org/10.1038/s41420-023-01553-4
[27]  Bevaart, L., Vervoordeldonk, M.J. and Tak, P.P. (2009) Collagen-Induced Arthritis in Mice. In: Proetzel, G. and Wiles, M., Eds., Mouse Models for Drug Discovery, Humana Press, 181-192.
https://doi.org/10.1007/978-1-60761-058-8_11
[28]  Augello, A., Tasso, R., Negrini, S.M., Cancedda, R. and Pennesi, G. (2007) Cell Therapy Using Allogeneic Bone Marrow Mesenchymal Stem Cells Prevents Tissue Damage in Collagen-Induced Arthritis. Arthritis & Rheumatism, 56, 1175-1186.
https://doi.org/10.1002/art.22511
[29]  Liu, Y., Mu, R., Wang, S., Long, L., Liu, X., Li, R., et al. (2010) Therapeutic Potential of Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Rheumatoid Arthritis. Arthritis Research & Therapy, 12, Article No. R210.
https://doi.org/10.1186/ar3187
[30]  García-Carrasco, M., Mendoza Pinto, C., Solís Poblano, J.C., et al. (2013) Systemic Lupus Erythematosus. In: Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., et al., Eds., Autoimmunity: From Bench to Bedside, El Rosario University Press, 12.
https://www.ncbi.nlm.nih.gov/books/NBK459474/
[31]  Kang, N., Liu, X., You, X., Sun, W., Haneef, K., Sun, X., et al. (2022) Aberrant B-Cell Activation in Systemic Lupus Erythematosus. Kidney Diseases, 8, 437-445.
https://doi.org/10.1159/000527213
[32]  Salari, V., Mengoni, F., Del Gallo, F., Bertini, G. and Fabene, P.F. (2020) The Anti-Inflammatory Properties of Mesenchymal Stem Cells in Epilepsy: Possible Treatments and Future Perspectives. International Journal of Molecular Sciences, 21, Article 9683.
https://doi.org/10.3390/ijms21249683
[33]  Peutz-Kootstra, C.J., de Heer, E., Hoedemaeker, P.J., Abrass, C.K. and Bruijn, J.A. (2001) Lupus Nephritis: Lessons from Experimental Animal Models. Journal of Laboratory and Clinical Medicine, 137, 244-260.
https://doi.org/10.1067/mlc.2001.113755
[34]  Jang, E., Jeong, M., Kim, S., Jang, K., Kang, B., Lee, D.Y., et al. (2016) Infusion of Human Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Autoimmune Nephritis in a Lupus Model by Suppressing Follicular Helper T-Cell Development. Cell Transplantation, 25, 1-15.
https://doi.org/10.3727/096368915x688173
[35]  Lee, J.C., Cha, C.I., Kim, D. and Choe, S.Y. (2015) Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats. Journal of Pathology and Translational Medicine, 49, 472-480.
https://doi.org/10.4132/jptm.2015.09.11
[36]  Admou, B., Eddehbi, F., Elmoumou, L., Elmojadili, S., Salami, A., Oujidi, M., et al. (2022) Anti-double Stranded DNA Antibodies: A Rational Diagnostic Approach in Limited-Resource Settings. Practical Laboratory Medicine, 31, e00285.
https://doi.org/10.1016/j.plabm.2022.e00285
[37]  Schwarzenbach, H. and Gahan, P.B. (2021) Exosomes in Immune Regulation. Non-Coding RNA, 7, Article 4.
https://doi.org/10.3390/ncrna7010004
[38]  Berebichez-Fridman, R. and Montero-Olvera, P.R. (2018) Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-Art Review. Sultan Qaboos University Medical Journal, 18, e264-e277.
https://doi.org/10.18295/squmj.2018.18.03.002
[39]  Kalluri, R. and LeBleu, V.S. (2016) Discovery of Double-Stranded Genomic DNA in Circulating Exosomes. Cold Spring Harbor Symposia on Quantitative Biology, 81, 275-280.
https://doi.org/10.1101/sqb.2016.81.030932
[40]  Lin, Z., Wu, Y., Xu, Y., Li, G., Li, Z. and Liu, T. (2022) Mesenchymal Stem Cell-Derived Exosomes in Cancer Therapy Resistance: Recent Advances and Therapeutic Potential. Molecular Cancer, 21, Article No. 179.
https://doi.org/10.1186/s12943-022-01650-5
[41]  NCI (2023) Acute Myeloid Leukemia Treatment.
https://www.cancer.gov/types/leukemia/patient/adult-aml-treatment-pdq
[42]  Lynch, O. and Calvi, L. (2022) Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells, 11, Article 580.
https://doi.org/10.3390/cells11030580
[43]  Szwedowicz, U., Łapińska, Z., Gajewska-Naryniecka, A. and Choromańska, A. (2022) Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology. Molecules, 27, Article 1303.
https://doi.org/10.3390/molecules27041303
[44]  Ju, Y., Hu, Y., Yang, P., Xie, X. and Fang, B. (2023) Extracellular Vesicle-Loaded Hydrogels for Tissue Repair and Regeneration. Materials Today Bio, 18, Article ID: 100522.
https://doi.org/10.1016/j.mtbio.2022.100522
[45]  Aguiar Koga, B.A., Fernandes, L.A., Fratini, P., Sogayar, M.C. and Carreira, A.C.O. (2023) Role of MSC-Derived Small Extracellular Vesicles in Tissue Repair and Regeneration. Frontiers in Cell and Developmental Biology, 10, Article 1047094.
https://doi.org/10.3389/fcell.2022.1047094
[46]  Li, S., Zhang, J., Feng, G., Jiang, L., Chen, Z., Xin, W., et al. (2022) The Emerging Role of Extracellular Vesicles from Mesenchymal Stem Cells and Macrophages in Pulmonary Fibrosis: Insights into Mirna Delivery. Pharmaceuticals, 15, Article 1276.
https://doi.org/10.3390/ph15101276
[47]  Matsuzaka, Y. and Yashiro, R. (2022) Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. International Journal of Molecular Sciences, 23, Article 6480.
https://doi.org/10.3390/ijms23126480
[48]  Yang, L., Wan, N., Gong, F., Wang, X., Feng, L. and Liu, G. (2023) Transcription Factors and Potential Therapeutic Targets for Pulmonary Hypertension. Frontiers in Cell and Developmental Biology, 11, Article 1132060.
https://doi.org/10.3389/fcell.2023.1132060
[49]  Majood, M., Rawat, S. and Mohanty, S. (2022) Delineating the Role of Extracellular Vesicles in Cancer Metastasis: A Comprehensive Review. Frontiers in Immunology, 13, Article 966661.
https://doi.org/10.3389/fimmu.2022.966661
[50]  Li, Q., Cai, S., Li, M., Salma, K.I., Zhou, X., Han, F., et al. (2021) Tumor-Derived Extracellular Vesicles: Their Role in Immune Cells and Immunotherapy. International Journal of Nanomedicine, 16, 5395-5409.
https://doi.org/10.2147/ijn.s313912
[51]  Xu, Z., Zeng, S., Gong, Z. and Yan, Y. (2020) Exosome-Based Immunotherapy: A Promising Approach for Cancer Treatment. Molecular Cancer, 19, Article No. 160.
https://doi.org/10.1186/s12943-020-01278-3
[52]  Wu, R., Fan, X., Wang, Y., Shen, M., Zheng, Y., Zhao, S., et al. (2022) Mesenchymal Stem Cell-Derived Extracellular Vesicles in Liver Immunity and Therapy. Frontiers in Immunology, 13, Article 833878.
https://doi.org/10.3389/fimmu.2022.833878
[53]  Bonowicz, K., Mikołajczyk, K., Faisal, I., Qamar, M., Steinbrink, K., Kleszczyński, K., et al. (2022) Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. International Journal of Molecular Sciences, 23, Article 15335.
https://doi.org/10.3390/ijms232315335
[54]  Nakane, M. (2020) Biological Effects of the Oxygen Molecule in Critically Ill Patients. Journal of Intensive Care, 8, Article No. 95.
https://doi.org/10.1186/s40560-020-00505-9
[55]  Hernández, A.E. and García, E. (2021) Mesenchymal Stem Cell Therapy for Alzheimer’s Disease. Stem Cells International, 2021, Article ID: 7834421.
https://doi.org/10.1155/2021/7834421
[56]  Sharma, A., Chakraborty, A. and Jaganathan, B.G. (2021) Review of the Potential of Mesenchymal Stem Cells for the Treatment of Infectious Diseases. World Journal of Stem Cells, 13, 568-593.
https://doi.org/10.4252/wjsc.v13.i6.568
[57]  Hui, C., Tadi, P., Khan Suheb, M.Z., et al. (2024) Ischemic Stroke. StatPearls.
https://www.ncbi.nlm.nih.gov/books/NBK499997/
[58]  DeSai, C. and Hays Shapshak, A. (2023) Cerebral Ischemia. StatPearls.
http://www.ncbi.nlm.nih.gov/books/NBK560510/
[59]  Xu, R., Ni, B., Wang, L., Shan, J., Pan, L., He, Y., et al. (2022) CCR2-Overexpressing Mesenchymal Stem Cells Targeting Damaged Liver Enhance Recovery of Acute Liver Failure. Stem Cell Research & Therapy, 13, Article No. 55.
https://doi.org/10.1186/s13287-022-02729-y
[60]  Marquez-Curtis, L.A. and Janowska-Wieczorek, A. (2013) Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis. BioMed Research International, 2013, Article ID: 561098.
https://doi.org/10.1155/2013/561098
[61]  Namestnikova, D.D., Gubskiy, I.L., Revkova, V.A., Sukhinich, K.K., Melnikov, P.A., Gabashvili, A.N., et al. (2021) Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting with Their First Pass through the Brain with Regard to the Therapeutic Action. Frontiers in Neuroscience, 15, Article 641970.
https://doi.org/10.3389/fnins.2021.641970
[62]  Musiał-Wysocka, A., Kot, M. and Majka, M. (2019) The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. Cell Transplantation, 28, 801-812.
https://doi.org/10.1177/0963689719837897
[63]  Luo, R., Lu, Y., Liu, J., Cheng, J. and Chen, Y. (2019) Enhancement of the Efficacy of Mesenchymal Stem Cells in the Treatment of Ischemic Diseases. Biomedicine & Pharmacotherapy, 109, 2022-2034.
https://doi.org/10.1016/j.biopha.2018.11.068
[64]  Correale, J. and Marrodan, M. (2022) Multiple Sclerosis and Obesity: The Role of Adipokines. Frontiers in Immunology, 13, Article 1038393.
https://doi.org/10.3389/fimmu.2022.1038393
[65]  Phan, J., Kumar, P., Hao, D., Gao, K., Farmer, D. and Wang, A. (2018) Engineering Mesenchymal Stem Cells to Improve Their Exosome Efficacy and Yield for Cell-Free Therapy. Journal of Extracellular Vesicles, 7, Article ID: 1522236.
https://doi.org/10.1080/20013078.2018.1522236
[66]  Morris, J. (2015) Amyotrophic Lateral Sclerosis (ALS) and Related Motor Neuron Diseases: An Overview. The Neurodiagnostic Journal, 55, 180-194.
https://doi.org/10.1080/21646821.2015.1075181
[67]  El Ouaamari, Y., Van den Bos, J., Willekens, B., Cools, N. and Wens, I. (2023) Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. International Journal of Molecular Sciences, 24, Article 3866.
https://doi.org/10.3390/ijms24043866
[68]  Lin, T., Cheng, K., Wu, L., Lai, W., Ling, T., Kuo, Y., et al. (2022) Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Frontiers in Cell and Developmental Biology, 10, Article 851613.
https://doi.org/10.3389/fcell.2022.851613
[69]  Nowak, B., Rogujski, P., Janowski, M., Lukomska, B. and Andrzejewska, A. (2021) Mesenchymal Stem Cells in Glioblastoma Therapy and Progression: How One Cell Does It All. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188582.
https://doi.org/10.1016/j.bbcan.2021.188582
[70]  Campero-Romero, A.N., Real, F.H., Santana-Martínez, R.A., Molina-Villa, T., Aranda, C., Ríos-Castro, E., et al. (2023) Extracellular Vesicles from Neural Progenitor Cells Promote Functional Recovery after Stroke in Mice with Pharmacological Inhibition of Neurogenesis. Cell Death Discovery, 9, Article No. 272.
https://doi.org/10.1038/s41420-023-01561-4
[71]  Fan, X., Zhang, Y., Li, X. and Fu, Q. (2020) Mechanisms Underlying the Protective Effects of Mesenchymal Stem Cell-Based Therapy. Cellular and Molecular Life Sciences, 77, 2771-2794.
https://doi.org/10.1007/s00018-020-03454-6
[72]  Frykberg, R.G. and Banks, J. (2015) Challenges in the Treatment of Chronic Wounds. Advances in Wound Care, 4, 560-582.
https://doi.org/10.1089/wound.2015.0635
[73]  Galieva, L.R., James, V., Mukhamedshina, Y.O. and Rizvanov, A.A. (2019) Therapeutic Potential of Extracellular Vesicles for the Treatment of Nerve Disorders. Frontiers in Neuroscience, 13, Article 163.
https://doi.org/10.3389/fnins.2019.00163
[74]  Berglund, A.K., Fortier, L.A., Antczak, D.F. and Schnabel, L.V. (2017) Immunoprivileged No More: Measuring the Immunogenicity of Allogeneic Adult Mesenchymal Stem Cells. Stem Cell Research & Therapy, 8, Article No. 288.
https://doi.org/10.1186/s13287-017-0742-8
[75]  Fernández-Francos, S., Eiro, N., Costa, L.A., Escudero-Cernuda, S., Fernández-Sánchez, M.L. and Vizoso, F.J. (2021) Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. International Journal of Molecular Sciences, 22, Article 3576.
https://doi.org/10.3390/ijms22073576
[76]  Goutman, S.A., Savelieff, M.G., Sakowski, S.A. and Feldman, E.L. (2019) Stem Cell Treatments for Amyotrophic Lateral Sclerosis: A Critical Overview of Early Phase Trials. Expert Opinion on Investigational Drugs, 28, 525-543.
https://doi.org/10.1080/13543784.2019.1627324
[77]  Pittenger, M.F., Discher, D.E., Péault, B.M., Phinney, D.G., Hare, J.M. and Caplan, A.I. (2019) Mesenchymal Stem Cell Perspective: Cell Biology to Clinical Progress. NPJ Regenerative Medicine, 4, Article No. 22.
https://doi.org/10.1038/s41536-019-0083-6
[78]  Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C., et al. (2021) Challenges and Advances in Clinical Applications of Mesenchymal Stromal Cells. Journal of Hematology & Oncology, 14, Article No. 24.
https://doi.org/10.1186/s13045-021-01037-x
[79]  Ng, C.P., Mohamed Sharif, A.R., Heath, D.E., Chow, J.W., Zhang, C.B., Chan-Park, M.B., et al. (2014) Enhanced Ex Vivo Expansion of Adult Mesenchymal Stem Cells by Fetal Mesenchymal Stem Cell ECM. Biomaterials, 35, 4046-4057.
https://doi.org/10.1016/j.biomaterials.2014.01.081
[80]  Wang, S., Wang, Z., Su, H., Chen, F., Ma, M., Yu, W., et al. (2021) Effects of Long-Term Culture on the Biological Characteristics and RNA Profiles of Human Bone-Marrow-Derived Mesenchymal Stem Cells. Molecular TherapyNucleic Acids, 26, 557-574.
https://doi.org/10.1016/j.omtn.2021.08.013
[81]  Montazersaheb, S., Ehsani, A., Fathi, E. and Farahzadi, R. (2022) Cellular and Molecular Mechanisms Involved in Hematopoietic Stem Cell Aging as a Clinical Prospect. Oxidative Medicine and Cellular Longevity, 2022, Article ID: 2713483.
https://doi.org/10.1155/2022/2713483
[82]  Rodriguez, R., Rubio, R., Masip, M., Catalina, P., Nieto, A., de la Cueva, T., et al. (2009) Loss of P53 Induces Tumorigenesis in P21-Deficient Mesenchymal Stem Cells. Neoplasia, 11, 397-407.
https://doi.org/10.1593/neo.81620

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133