Stem cells are the foundation of cellular therapy. They are multipotent cells capable of self-renewing and differentiating into several cell lineages. They are being investigated and used for the treatment of a wide range of diseases. There are various stem cell types and sources, with mesenchymal stem cells standing out as one noteworthy example. With neurological disorders being a major cause of deaths and disabilities worldwide, ongoing studies are investigating the therapeutic potential of mesenchymal stem cells for treating neuropathies. This review comprehensively outlines various neurological diseases and explores the therapeutic potential of mesenchymal stem cells in ischemic stroke, multiple sclerosis, ALS, Alzheimer’s, hypoxia, and glioblastoma. However, there are challenges and limitations in mesenchymal stem cell-based therapies, including concerns about immunocompatibility, maintenance of stemness and differentiation stability, and the potential risk of tumor formation.
References
[1]
Alessandrini, M., Preynat-Seauve, O., De Briun, K. and Pepper, M.S. (2019) Stem Cell Therapy for Neurological Disorders. SouthAfricanMedicalJournal, 109, 70-77. https://doi.org/10.7196/samj.2019.v109i8b.14009
[2]
Jiang, C., Lin, L., Long, S., Ke, X., Fukunaga, K., Lu, Y., et al. (2022) Signalling Pathways in Autism Spectrum Disorder: Mechanisms and Therapeutic Implications. SignalTransductionandTargetedTherapy, 7, Article No. 229. https://doi.org/10.1038/s41392-022-01081-0
[3]
Steinruecke, M., Mason, I., Keen, M., McWhirter, L., Carson, A.J., Stone, J., et al. (2024) Pain and Functional Neurological Disorder: A Systematic Review and Meta-Analysis. JournalofNeurology, Neurosurgery&Psychiatry, 95, 874-885. https://doi.org/10.1136/jnnp-2023-332810
[4]
Bhagavati, S. (2021) Autoimmune Disorders of the Nervous System: Pathophysiology, Clinical Features, and Therapy. FrontiersinNeurology, 12, Article 664664. https://doi.org/10.3389/fneur.2021.664664
[5]
Bonanni, R., Cariati, I., Tarantino, U., D’Arcangelo, G. and Tancredi, V. (2022) Physical Exercise and Health: A Focus on Its Protective Role in Neurodegenerative Diseases. JournalofFunctionalMorphologyandKinesiology, 7, Article 38. https://doi.org/10.3390/jfmk7020038
[6]
Simmons, S.B., Skolaris, A., Love, R., Fricker, T., Penko, A.L., Li, Y., et al. (2024) Intensive Aerobic Cycling Is Feasible and Elicits Improvements in Gait Velocity in Individuals with Multiple Sclerosis: A Preliminary Study. International Journal of MSCare, 26, 119-124. https://doi.org/10.7224/1537-2073.2023-042
[7]
Xunian, Z. and Kalluri, R. (2020) Biology and Therapeutic Potential of Mesenchymal Stem Cell-Derived Exosomes. CancerScience, 111, 3100-3110. https://doi.org/10.1111/cas.14563
[8]
Babaei, H., Kheirollah, A., Ranjbaran, M., Cheraghzadeh, M., Sarkaki, A. and Adelipour, M. (2023) Preconditioning Adipose-Derived Mesenchymal Stem Cells with Dimethyl Fumarate Promotes Their Therapeutic Efficacy in the Brain Tissues of Rats with Alzheimer’s Disease. Biochemical and Biophysical Research Communications, 672, 120-127. https://doi.org/10.1016/j.bbrc.2023.06.045
[9]
Han, Y., Yang, J., Fang, J., Zhou, Y., Candi, E., Wang, J., et al. (2022) The Secretion Profile of Mesenchymal Stem Cells and Potential Applications in Treating Human Diseases. SignalTransductionandTargetedTherapy, 7, Article No. 92. https://doi.org/10.1038/s41392-022-00932-0
[10]
Ohori-Morita, Y., Niibe, K., Limraksasin, P., Nattasit, P., Miao, X., Yamada, M., et al. (2022) Novel Mesenchymal Stem Cell Spheroids with Enhanced Stem Cell Characteristics and Bone Regeneration Ability. Stem Cells Translational Medicine, 11, 434-449. https://doi.org/10.1093/stcltm/szab030
[11]
Kulus, M., Sibiak, R., Stefańska, K., Zdun, M., Wieczorkiewicz, M., Piotrowska-Kempisty, H., et al. (2021) Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues—Origins, Characteristics, Signaling Pathways, and Clinical Trials. Cells, 10, Article 3278. https://doi.org/10.3390/cells10123278
[12]
Giovannelli, L., Bari, E., Jommi, C., Tartara, F., Armocida, D., Garbossa, D., et al. (2023) Mesenchymal Stem Cell Secretome and Extracellular Vesicles for Neurodegenerative Diseases: Risk-Benefit Profile and Next Steps for the Market Access. BioactiveMaterials, 29, 16-35. https://doi.org/10.1016/j.bioactmat.2023.06.013
[13]
Ferreira, J.R., Teixeira, G.Q., Santos, S.G., Barbosa, M.A., Almeida-Porada, G. and Gonçalves, R.M. (2018) Mesenchymal Stromal Cell Secretome: Influencing Therapeutic Potential by Cellular Pre-Conditioning. FrontiersinImmunology, 9, Article 2837. https://doi.org/10.3389/fimmu.2018.02837
[14]
Laloze, J., Lacoste, M., Marouf, F., Carpentier, G., Vignaud, L., Chaput, B., et al. (2023) Specific Features of Stromal Cells Isolated from the Two Layers of Subcutaneous Adipose Tissue: Roles of Their Secretion on Angiogenesis and Neurogenesis. JournalofClinicalMedicine, 12, Article 4214. https://doi.org/10.3390/jcm12134214
[15]
Lamptey, R.N.L., Chaulagain, B., Trivedi, R., Gothwal, A., Layek, B. and Singh, J. (2022) A Review of the Common Neurodegenerative Disorders: Current Therapeutic Approaches and the Potential Role of Nanotherapeutics. InternationalJournalofMolecularSciences, 23, Article 1851. https://doi.org/10.3390/ijms23031851
[16]
Jia, Y., Yu, L., Ma, T., Xu, W., Qian, H., Sun, Y., et al. (2022) Small Extracellular Vesicles Isolation and Separation: Current Techniques, Pending Questions and Clinical Applications. Theranostics, 12, 6548-6575. https://doi.org/10.7150/thno.74305
[17]
Yari, H., Mikhailova, M.V., Mardasi, M., Jafarzadehgharehziaaddin, M., Shahrokh, S., Thangavelu, L., et al. (2022) Emerging Role of Mesenchymal Stromal Cells (MSCs)-Derived Exosome in Neurodegeneration-Associated Conditions: A Groundbreaking Cell-Free Approach. StemCellResearch&Therapy, 13, Article No. 423. https://doi.org/10.1186/s13287-022-03122-5
[18]
Goenka, V., Borkar, T., Desai, A. and Das, R.K. (2020) Therapeutic Potential of Mesenchymal Stem Cells in Treating Both Types of Diabetes Mellitus and Associated Diseases. JournalofDiabetes&MetabolicDisorders, 19, 1979-1993. https://doi.org/10.1007/s40200-020-00647-5
[19]
Miceli, V., Bulati, M., Iannolo, G., Zito, G., Gallo, A. and Conaldi, P.G. (2021) Therapeutic Properties of Mesenchymal Stromal/Stem Cells: The Need of Cell Priming for Cell-Free Therapies in Regenerative Medicine. International Journal of Molecular Sciences, 22, Article 763. https://doi.org/10.3390/ijms22020763
[20]
Yang, J. and Liu, Z. (2022) Mechanistic Pathogenesis of Endothelial Dysfunction in Diabetic Nephropathy and Retinopathy. Frontiers in Endocrinology, 13, Article 816400. https://doi.org/10.3389/fendo.2022.816400
[21]
Zang, L., Hao, H., Liu, J., Li, Y., Han, W. and Mu, Y. (2017) Mesenchymal Stem Cell Therapy in Type 2 Diabetes Mellitus. Diabetology&MetabolicSyndrome, 9, Article No. 36. https://doi.org/10.1186/s13098-017-0233-1
[22]
Zhao, H., Wu, L., Yan, G., Chen, Y., Zhou, M., Wu, Y., et al. (2021) Inflammation and Tumor Progression: Signaling Pathways and Targeted Intervention. SignalTransductionandTargetedTherapy, 6, Article No. 263. https://doi.org/10.1038/s41392-021-00658-5
[23]
Fuloria, S., Subramaniyan, V., Dahiya, R., Dahiya, S., Sudhakar, K., Kumari, U., et al. (2021) Mesenchymal Stem Cell-Derived Extracellular Vesicles: Regenerative Potential and Challenges. Biology, 10, Article 172. https://doi.org/10.3390/biology10030172
[24]
Shandil, R.K., Dhup, S. and Narayanan, S. (2022) Evaluation of the Therapeutic Potential of Mesenchymal Stem Cells (MSCs) in Preclinical Models of Autoimmune Diseases. StemCellsInternational, 2022, Article ID: 6379161. https://doi.org/10.1155/2022/6379161
[25]
Bullock, J., Rizvi, S.A.A., Saleh, A.M., Ahmed, S.S., Do, D.P., Ansari, R.A., et al. (2018) Rheumatoid Arthritis: A Brief Overview of the Treatment. Medical Principles and Practice, 27, 501-507. https://doi.org/10.1159/000493390
[26]
Huo, J., Feng, Q., Pan, S., Fu, W., Liu, Z. and Liu, Z. (2023) Diabetic Cardiomyopathy: Early Diagnostic Biomarkers, Pathogenetic Mechanisms, and Therapeutic Interventions. CellDeathDiscovery, 9, Article No. 256. https://doi.org/10.1038/s41420-023-01553-4
[27]
Bevaart, L., Vervoordeldonk, M.J. and Tak, P.P. (2009) Collagen-Induced Arthritis in Mice. In: Proetzel, G. and Wiles, M., Eds., Mouse Models for Drug Discovery, Humana Press, 181-192. https://doi.org/10.1007/978-1-60761-058-8_11
[28]
Augello, A., Tasso, R., Negrini, S.M., Cancedda, R. and Pennesi, G. (2007) Cell Therapy Using Allogeneic Bone Marrow Mesenchymal Stem Cells Prevents Tissue Damage in Collagen-Induced Arthritis. Arthritis&Rheumatism, 56, 1175-1186. https://doi.org/10.1002/art.22511
[29]
Liu, Y., Mu, R., Wang, S., Long, L., Liu, X., Li, R., et al. (2010) Therapeutic Potential of Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Rheumatoid Arthritis. ArthritisResearch&Therapy, 12, Article No. R210. https://doi.org/10.1186/ar3187
[30]
García-Carrasco, M., Mendoza Pinto, C., Solís Poblano, J.C., et al. (2013) Systemic Lupus Erythematosus. In: Anaya, J.M., Shoenfeld, Y., Rojas-Villarraga, A., et al., Eds., Autoimmunity: FromBenchtoBedside, El Rosario University Press, 12. https://www.ncbi.nlm.nih.gov/books/NBK459474/
[31]
Kang, N., Liu, X., You, X., Sun, W., Haneef, K., Sun, X., et al. (2022) Aberrant B-Cell Activation in Systemic Lupus Erythematosus. KidneyDiseases, 8, 437-445. https://doi.org/10.1159/000527213
[32]
Salari, V., Mengoni, F., Del Gallo, F., Bertini, G. and Fabene, P.F. (2020) The Anti-Inflammatory Properties of Mesenchymal Stem Cells in Epilepsy: Possible Treatments and Future Perspectives. International Journal of Molecular Sciences, 21, Article 9683. https://doi.org/10.3390/ijms21249683
[33]
Peutz-Kootstra, C.J., de Heer, E., Hoedemaeker, P.J., Abrass, C.K. and Bruijn, J.A. (2001) Lupus Nephritis: Lessons from Experimental Animal Models. JournalofLaboratoryandClinicalMedicine, 137, 244-260. https://doi.org/10.1067/mlc.2001.113755
[34]
Jang, E., Jeong, M., Kim, S., Jang, K., Kang, B., Lee, D.Y., et al. (2016) Infusion of Human Bone Marrow-Derived Mesenchymal Stem Cells Alleviates Autoimmune Nephritis in a Lupus Model by Suppressing Follicular Helper T-Cell Development. CellTransplantation, 25, 1-15. https://doi.org/10.3727/096368915x688173
[35]
Lee, J.C., Cha, C.I., Kim, D. and Choe, S.Y. (2015) Therapeutic Effects of Umbilical Cord Blood Derived Mesenchymal Stem Cell-Conditioned Medium on Pulmonary Arterial Hypertension in Rats. JournalofPathologyandTranslationalMedicine, 49, 472-480. https://doi.org/10.4132/jptm.2015.09.11
[36]
Admou, B., Eddehbi, F., Elmoumou, L., Elmojadili, S., Salami, A., Oujidi, M., et al. (2022) Anti-double Stranded DNA Antibodies: A Rational Diagnostic Approach in Limited-Resource Settings. PracticalLaboratoryMedicine, 31, e00285. https://doi.org/10.1016/j.plabm.2022.e00285
[37]
Schwarzenbach, H. and Gahan, P.B. (2021) Exosomes in Immune Regulation. Non-Coding RNA, 7, Article 4. https://doi.org/10.3390/ncrna7010004
[38]
Berebichez-Fridman, R. and Montero-Olvera, P.R. (2018) Sources and Clinical Applications of Mesenchymal Stem Cells: State-of-the-Art Review. Sultan Qaboos University Medical Journal, 18, e264-e277. https://doi.org/10.18295/squmj.2018.18.03.002
[39]
Kalluri, R. and LeBleu, V.S. (2016) Discovery of Double-Stranded Genomic DNA in Circulating Exosomes. Cold Spring Harbor Symposia on Quantitative Biology, 81, 275-280. https://doi.org/10.1101/sqb.2016.81.030932
[40]
Lin, Z., Wu, Y., Xu, Y., Li, G., Li, Z. and Liu, T. (2022) Mesenchymal Stem Cell-Derived Exosomes in Cancer Therapy Resistance: Recent Advances and Therapeutic Potential. MolecularCancer, 21, Article No. 179. https://doi.org/10.1186/s12943-022-01650-5
Lynch, O. and Calvi, L. (2022) Immune Dysfunction, Cytokine Disruption, and Stromal Changes in Myelodysplastic Syndrome: A Review. Cells, 11, Article 580. https://doi.org/10.3390/cells11030580
[43]
Szwedowicz, U., Łapińska, Z., Gajewska-Naryniecka, A. and Choromańska, A. (2022) Exosomes and Other Extracellular Vesicles with High Therapeutic Potential: Their Applications in Oncology, Neurology, and Dermatology. Molecules, 27, Article 1303. https://doi.org/10.3390/molecules27041303
[44]
Ju, Y., Hu, Y., Yang, P., Xie, X. and Fang, B. (2023) Extracellular Vesicle-Loaded Hydrogels for Tissue Repair and Regeneration. Materials Today Bio, 18, Article ID: 100522. https://doi.org/10.1016/j.mtbio.2022.100522
[45]
Aguiar Koga, B.A., Fernandes, L.A., Fratini, P., Sogayar, M.C. and Carreira, A.C.O. (2023) Role of MSC-Derived Small Extracellular Vesicles in Tissue Repair and Regeneration. FrontiersinCellandDevelopmentalBiology, 10, Article 1047094. https://doi.org/10.3389/fcell.2022.1047094
[46]
Li, S., Zhang, J., Feng, G., Jiang, L., Chen, Z., Xin, W., et al. (2022) The Emerging Role of Extracellular Vesicles from Mesenchymal Stem Cells and Macrophages in Pulmonary Fibrosis: Insights into Mirna Delivery. Pharmaceuticals, 15, Article 1276. https://doi.org/10.3390/ph15101276
[47]
Matsuzaka, Y. and Yashiro, R. (2022) Therapeutic Strategy of Mesenchymal-Stem-Cell-Derived Extracellular Vesicles as Regenerative Medicine. International Journal ofMolecularSciences, 23, Article 6480. https://doi.org/10.3390/ijms23126480
[48]
Yang, L., Wan, N., Gong, F., Wang, X., Feng, L. and Liu, G. (2023) Transcription Factors and Potential Therapeutic Targets for Pulmonary Hypertension. FrontiersinCellandDevelopmentalBiology, 11, Article 1132060. https://doi.org/10.3389/fcell.2023.1132060
[49]
Majood, M., Rawat, S. and Mohanty, S. (2022) Delineating the Role of Extracellular Vesicles in Cancer Metastasis: A Comprehensive Review. Frontiers in Immunology, 13, Article 966661. https://doi.org/10.3389/fimmu.2022.966661
[50]
Li, Q., Cai, S., Li, M., Salma, K.I., Zhou, X., Han, F., et al. (2021) Tumor-Derived Extracellular Vesicles: Their Role in Immune Cells and Immunotherapy. International JournalofNanomedicine, 16, 5395-5409. https://doi.org/10.2147/ijn.s313912
[51]
Xu, Z., Zeng, S., Gong, Z. and Yan, Y. (2020) Exosome-Based Immunotherapy: A Promising Approach for Cancer Treatment. MolecularCancer, 19, Article No. 160. https://doi.org/10.1186/s12943-020-01278-3
[52]
Wu, R., Fan, X., Wang, Y., Shen, M., Zheng, Y., Zhao, S., et al. (2022) Mesenchymal Stem Cell-Derived Extracellular Vesicles in Liver Immunity and Therapy. Frontiers inImmunology, 13, Article 833878. https://doi.org/10.3389/fimmu.2022.833878
[53]
Bonowicz, K., Mikołajczyk, K., Faisal, I., Qamar, M., Steinbrink, K., Kleszczyński, K., et al. (2022) Mechanism of Extracellular Vesicle Secretion Associated with TGF-β-Dependent Inflammatory Response in the Tumor Microenvironment. International JournalofMolecularSciences, 23, Article 15335. https://doi.org/10.3390/ijms232315335
[54]
Nakane, M. (2020) Biological Effects of the Oxygen Molecule in Critically Ill Patients. JournalofIntensiveCare, 8, Article No. 95. https://doi.org/10.1186/s40560-020-00505-9
[55]
Hernández, A.E. and García, E. (2021) Mesenchymal Stem Cell Therapy for Alzheimer’s Disease. StemCellsInternational, 2021, Article ID: 7834421. https://doi.org/10.1155/2021/7834421
[56]
Sharma, A., Chakraborty, A. and Jaganathan, B.G. (2021) Review of the Potential of Mesenchymal Stem Cells for the Treatment of Infectious Diseases. WorldJournalofStemCells, 13, 568-593. https://doi.org/10.4252/wjsc.v13.i6.568
Marquez-Curtis, L.A. and Janowska-Wieczorek, A. (2013) Enhancing the Migration Ability of Mesenchymal Stromal Cells by Targeting the SDF-1/CXCR4 Axis. BioMedResearchInternational, 2013, Article ID: 561098. https://doi.org/10.1155/2013/561098
[61]
Namestnikova, D.D., Gubskiy, I.L., Revkova, V.A., Sukhinich, K.K., Melnikov, P.A., Gabashvili, A.N., et al. (2021) Intra-Arterial Stem Cell Transplantation in Experimental Stroke in Rats: Real-Time MR Visualization of Transplanted Cells Starting with Their First Pass through the Brain with Regard to the Therapeutic Action. FrontiersinNeuroscience, 15, Article 641970. https://doi.org/10.3389/fnins.2021.641970
[62]
Musiał-Wysocka, A., Kot, M. and Majka, M. (2019) The Pros and Cons of Mesenchymal Stem Cell-Based Therapies. CellTransplantation, 28, 801-812. https://doi.org/10.1177/0963689719837897
[63]
Luo, R., Lu, Y., Liu, J., Cheng, J. and Chen, Y. (2019) Enhancement of the Efficacy of Mesenchymal Stem Cells in the Treatment of Ischemic Diseases. Biomedicine & Pharmacotherapy, 109, 2022-2034. https://doi.org/10.1016/j.biopha.2018.11.068
[64]
Correale, J. and Marrodan, M. (2022) Multiple Sclerosis and Obesity: The Role of Adipokines. FrontiersinImmunology, 13, Article 1038393. https://doi.org/10.3389/fimmu.2022.1038393
[65]
Phan, J., Kumar, P., Hao, D., Gao, K., Farmer, D. and Wang, A. (2018) Engineering Mesenchymal Stem Cells to Improve Their Exosome Efficacy and Yield for Cell-Free Therapy. JournalofExtracellularVesicles, 7, Article ID: 1522236. https://doi.org/10.1080/20013078.2018.1522236
[66]
Morris, J. (2015) Amyotrophic Lateral Sclerosis (ALS) and Related Motor Neuron Diseases: An Overview. TheNeurodiagnosticJournal, 55, 180-194. https://doi.org/10.1080/21646821.2015.1075181
[67]
El Ouaamari, Y., Van den Bos, J., Willekens, B., Cools, N. and Wens, I. (2023) Neurotrophic Factors as Regenerative Therapy for Neurodegenerative Diseases: Current Status, Challenges and Future Perspectives. International Journal of Molecular Sciences, 24, Article 3866. https://doi.org/10.3390/ijms24043866
[68]
Lin, T., Cheng, K., Wu, L., Lai, W., Ling, T., Kuo, Y., et al. (2022) Potential of Cellular Therapy for ALS: Current Strategies and Future Prospects. Frontiers in Cell and DevelopmentalBiology, 10, Article 851613. https://doi.org/10.3389/fcell.2022.851613
[69]
Nowak, B., Rogujski, P., Janowski, M., Lukomska, B. and Andrzejewska, A. (2021) Mesenchymal Stem Cells in Glioblastoma Therapy and Progression: How One Cell Does It All. Biochimica et Biophysica Acta (BBA)—Reviews on Cancer, 1876, Article ID: 188582. https://doi.org/10.1016/j.bbcan.2021.188582
[70]
Campero-Romero, A.N., Real, F.H., Santana-Martínez, R.A., Molina-Villa, T., Aranda, C., Ríos-Castro, E., et al. (2023) Extracellular Vesicles from Neural Progenitor Cells Promote Functional Recovery after Stroke in Mice with Pharmacological Inhibition of Neurogenesis. CellDeathDiscovery, 9, Article No. 272. https://doi.org/10.1038/s41420-023-01561-4
[71]
Fan, X., Zhang, Y., Li, X. and Fu, Q. (2020) Mechanisms Underlying the Protective Effects of Mesenchymal Stem Cell-Based Therapy. Cellular and Molecular Life Sciences, 77, 2771-2794. https://doi.org/10.1007/s00018-020-03454-6
[72]
Frykberg, R.G. and Banks, J. (2015) Challenges in the Treatment of Chronic Wounds. AdvancesinWoundCare, 4, 560-582. https://doi.org/10.1089/wound.2015.0635
[73]
Galieva, L.R., James, V., Mukhamedshina, Y.O. and Rizvanov, A.A. (2019) Therapeutic Potential of Extracellular Vesicles for the Treatment of Nerve Disorders. FrontiersinNeuroscience, 13, Article 163. https://doi.org/10.3389/fnins.2019.00163
[74]
Berglund, A.K., Fortier, L.A., Antczak, D.F. and Schnabel, L.V. (2017) Immunoprivileged No More: Measuring the Immunogenicity of Allogeneic Adult Mesenchymal Stem Cells. StemCellResearch&Therapy, 8, Article No. 288. https://doi.org/10.1186/s13287-017-0742-8
[75]
Fernández-Francos, S., Eiro, N., Costa, L.A., Escudero-Cernuda, S., Fernández-Sánchez, M.L. and Vizoso, F.J. (2021) Mesenchymal Stem Cells as a Cornerstone in a Galaxy of Intercellular Signals: Basis for a New Era of Medicine. InternationalJournalofMolecularSciences, 22, Article 3576. https://doi.org/10.3390/ijms22073576
[76]
Goutman, S.A., Savelieff, M.G., Sakowski, S.A. and Feldman, E.L. (2019) Stem Cell Treatments for Amyotrophic Lateral Sclerosis: A Critical Overview of Early Phase Trials. ExpertOpiniononInvestigationalDrugs, 28, 525-543. https://doi.org/10.1080/13543784.2019.1627324
Zhou, T., Yuan, Z., Weng, J., Pei, D., Du, X., He, C., et al. (2021) Challenges and Advances in Clinical Applications of Mesenchymal Stromal Cells. Journal of Hematology&Oncology, 14, Article No. 24. https://doi.org/10.1186/s13045-021-01037-x
Wang, S., Wang, Z., Su, H., Chen, F., Ma, M., Yu, W., et al. (2021) Effects of Long-Term Culture on the Biological Characteristics and RNA Profiles of Human Bone-Marrow-Derived Mesenchymal Stem Cells. MolecularTherapy—NucleicAcids, 26, 557-574. https://doi.org/10.1016/j.omtn.2021.08.013
[81]
Montazersaheb, S., Ehsani, A., Fathi, E. and Farahzadi, R. (2022) Cellular and Molecular Mechanisms Involved in Hematopoietic Stem Cell Aging as a Clinical Prospect. OxidativeMedicineandCellularLongevity, 2022, Article ID: 2713483. https://doi.org/10.1155/2022/2713483
[82]
Rodriguez, R., Rubio, R., Masip, M., Catalina, P., Nieto, A., de la Cueva, T., et al. (2009) Loss of P53 Induces Tumorigenesis in P21-Deficient Mesenchymal Stem Cells. Neoplasia, 11, 397-407. https://doi.org/10.1593/neo.81620