全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一阶偏微分方程的应用:交通流建模分析
Application of First-Order Partial Differential Equations: Traffic Flow Modeling and Analysis

DOI: 10.12677/ijfd.2024.124006, PP. 55-65

Keywords: 偏微分方程,交通流,多车道,激波
Partial Differential Equations
, Traffic Flow, Multi-Lane, Shock Wave

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文主要研究偏微分方程在交通流中的应用,并将该案例应用到具体的教学中去。首先设计并分析了全新的单车道与多车道的交通流模型,此模型在车辆数量守恒的基础上,将问题抽象为关于车流量的一阶微分方程,通过求解方程,集中讨论了在有(无)流出情况下单车道的变化情况与抑制激波的产生等性质。通过模型的建立以及求解的方程的分析方法,可以培养学生的数学建模能力以及解决实际问题的能力。
This paper primarily investigates the application of partial differential equations in traffic flow and applies this case to specific teaching practices. Initially, a novel single-lane and multi-lane traffic flow model is designed and analyzed. Based on the conservation of vehicle numbers, the problem is abstracted into a first-order differential equation concerning traffic flow. By solving the equation, the paper focuses on discussing the changes in single-lane conditions with (or without) outflow and the suppression of shock wave generation, among other properties. Through the establishment of the model and the analysis of the solved equations, students’ abilities in mathematical modeling and problem-solving in real-world scenarios can be cultivated.

References

[1]  Lighthill, M.J. and Whitham, G.B. (1955) On Kinematic Waves II. A Theory of Traffic Flow on Long Crowded Roads. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229, 317-345.
[2]  Lighthill, M.J. and Whitham, G.B. (1955) On Kinematic Waves I. Flood Movement in Long Rivers. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 229, 281-316.
[3]  May, A.D. (1990) Traffic Flow Fundamentals. Prentice Hall Inc.
[4]  Childress, S. (2005) Notes on Traffic Flow.
https://math.nyu.edu/~childres/traffic3.pdf

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133