全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

几类曲壁蜂窝结构的关联机制及力学特性
The Correlation Mechanism and Mechanical Properties of Several Curved Honeycombs

DOI: 10.12677/ijm.2024.134016, PP. 154-166

Keywords: 曲壁蜂窝,负泊松比,四手性蜂窝,轻量化,能量吸收
Curved Wall Honeycomb
, Negative Poisson’s Ratio, Four-Chiral Honeycomb, Lightweight, Energy Absorption

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来蜂窝结构因其独特的力学性能引起了众多研究者的兴趣,蜂窝结构在航空航天、车辆和工程防护等领域具有非常广阔的应用前景。蜂窝胞元为直壁时,受力容易出现应力集中,而曲壁蜂窝可以有效地缓解应力集中问题。文章研究了四种曲壁蜂窝结构,即圆形孔蜂窝、椭圆形孔蜂窝、花生形孔蜂窝以及四手性蜂窝的内在关联。揭示了此类蜂窝结构的能量吸收机制,部分能量是通过蜂窝胞元旋转吸收的,而且胞元旋转产生了负泊松比。得出椭圆形孔蜂窝、花生形孔蜂窝以及四手性蜂窝这三类结构可以通过调节蜂窝胞元的几何参数实现相互转化。通过理论推导计算出四手性蜂窝的等效力学参数并与有限元进行对比以验证其正确性。3D打印试验模型、有限元模型的计算结果和文献进行了对比,在此基础上研究了这几类蜂窝结构的力学特性,包括力–位移曲线、泊松比和杨氏模量等。比较了三种曲壁蜂窝结构分别在相同孔隙率下和蜂窝壁厚最小处相同时的力学特性。文章所获得结果将为曲壁蜂窝结构的轻量化设计和在工程领域的广泛应用提供理论依据。
In recent years, honeycomb structures have attracted the interest of many researchers due to their unique mechanical properties and have very broad application prospects in aerospace, vehicle, and engineering protection fields. The straight-walled honeycomb is prone to stress concentration after being stressed, while curved walled honeycomb can effectively alleviate the problem of stress concentration. In this paper, the intrinsic correlation mechanism of four curved wall honeycomb structures, namely circular hole honeycomb, oval hole honeycomb, peanut-shaped hole honeycomb, and four-chiral honeycomb, is studied. The energy absorption mechanism of these honeycomb structures is revealed. Namely, part of the energy is absorbed by the rotation of the honeycomb cell, and the rotation of the cell produces a negative Poisson’s ratio simultaneously. It is concluded that three types of structures, namely elliptical pore honeycomb, peanut-shaped pore honeycomb, and tetra-chiral honeycomb, can be transformed into each other by adjusting the geometric parameters of cellular cells. The equivalent mechanical parameters of the four-chiral honeycomb are proposed and compared with the finite element to verify their accuracy. The calculation results of the 3D printing test model and the finite element model are compared with the literature. The mechanical properties of these honeycombs, including force-displacement curves, Poisson’s ratio and Young’s modulus, are studied. The mechanical properties of the three curved-walled honeycomb structures are compared under the same porosity and at the same minimum honeycomb wall thickness, respectively. The results obtained in this paper will provide a theoretical basis for the lightweight design and wide application of curved honeycomb structures in the engineering field.

References

[1]  吴文旺, 肖登宝, 孟嘉旭, 等. 负泊松比结构力学设计、抗冲击性能及在车辆工程应用与展望[J]. 力学学报, 2021, 53(3): 611-638.
[2]  Guo, H., Yuan, H., Zhang, J. and Ruan, D. (2024) Review of Sandwich Structures under Impact Loadings: Experimental, Numerical and Theoretical Analysis. Thin-Walled Structures, 196, Article ID: 111541.
https://doi.org/10.1016/j.tws.2023.111541
[3]  Zhang, J., Zhu, X., Yang, X. and Zhang, W. (2019) Transient Nonlinear Responses of an Auxetic Honeycomb Sandwich Plate under Impact Loads. International Journal of Impact Engineering, 134, Article ID: 103383.
https://doi.org/10.1016/j.ijimpeng.2019.103383
[4]  Zhu, X., Zhang, J., Zhang, W. and Chen, J. (2018) Vibration Frequencies and Energies of an Auxetic Honeycomb Sandwich Plate. Mechanics of Advanced Materials and Structures, 26, 1951-1957.
https://doi.org/10.1080/15376494.2018.1455933
[5]  白江畔, 张新春, 沈振峰, 等. 冲击载荷下多胞元薄壁结构的动态压溃行为研究[J]. 振动与冲击, 2020, 39(18): 145-152.
[6]  张新春, 刘颖, 章梓茂. 集中缺陷对蜂窝材料面内动力学性能的影响[J]. 工程力学, 2011, 28(5): 239-244.
[7]  Qu, Y., Chen, J., Jiao, L., Ye, T. and Hu, X. (2024) Experiment and Finite Element Analysis of Protective Honeycombs Based on Equivalent Method for Ocean Engineering under Impact Loading. Composite Structures, 331, Article ID: 117858.
https://doi.org/10.1016/j.compstruct.2023.117858
[8]  Wang, W., Zhang, W., Guo, M., Yang, J. and Ma, L. (2023) Energy Absorption Characteristics of a Lightweight Auxetic Honeycomb under Low-Velocity Impact Loading. Thin-Walled Structures, 185, Article ID: 110577.
https://doi.org/10.1016/j.tws.2023.110577
[9]  Lv, H., Chen, B., Shi, S. and Wen, Z. (2024) Minimum Mass Optimization of Curved Grid-Honeycomb Sandwich Panels with Cutouts under Buckling Constraints. Structures, 63, Article ID: 106359.
https://doi.org/10.1016/j.istruc.2024.106359
[10]  Liu, W., Zhang, Y., Guo, Z., Li, D., Zhao, S. and Xie, W. (2023) Analyzing In-Plane Mechanics of a Novel Honeycomb Structure with Zero Poisson’s Ratio. Thin-Walled Structures, 192, Article ID: 111134.
https://doi.org/10.1016/j.tws.2023.111134
[11]  闫昭臣, 张君华, 刘彦琦, 不同泊松比蜂窝夹层板的振动实验分析[J], 应用力学学报, 2021, 38(6), 2256-2261.
[12]  孟云聪, 周光明, 蔡登安. 连续碳纤维3D打印圆形增强蜂窝的面内压缩性能[J]. 复合材料学报, 2024, 41(4): 1776-1787.
[13]  周星驰, 唐振刚, 周徐斌, 等. CFRP圆形胞元蜂窝芯层面外剪切模量[J]. 复合材料学报, 2018, 35(10): 2777-2785.
[14]  Sun, D., Li, G. and Sun, Y. (2019) The In-Plane Crashworthiness of Multi-Layer Regularly Arranged Circular Honeycombs. Science Progress, 103, 1-28.
https://doi.org/10.1177/0036850419879028
[15]  Wu, H., Zhang, X. and Liu, Y. (2020) In-Plane Crushing Behavior of Density Graded Cross-Circular Honeycombs with Zero Poisson’s Ratio. Thin-Walled Structures, 151, Article ID: 106767.
https://doi.org/10.1016/j.tws.2020.106767
[16]  Zhu, D., Wei, Y., Shen, X., Yan, K., Yuan, M. and Qi, S. (2024) A Novel Elliptical Annular Re-Entrant Auxetic Honeycomb with Enhanced Stiffness. International Journal of Mechanical Sciences, 262, Article ID: 108732.
https://doi.org/10.1016/j.ijmecsci.2023.108732
[17]  Guo, Z., Li, Z., Lin, J., Mo, Z. and Li, J. (2023) Multi-Scale Characterization and In-Plane Crushing Behavior of the Elliptical Anti-Chiral Honeycomb. Composite Structures, 303, Article ID: 116345.
https://doi.org/10.1016/j.compstruct.2022.116345
[18]  冯学凯, 王宝珍, 巫绪涛, 等. 新型节圆正弦蜂窝面内压缩力学性能研究[J]. 力学学报, 2023, 55(9): 1910-1920.
[19]  吴熙蔚, 张建勋. 填充梯度泡沫锥形吸能盒轴向压缩行为与设计[J/OL]. 应用力学学报: 1-14.
https://kns.cnki.net/kcms2/detail/61.1112.O3.20230619.1009.002.html, 2024-11-25.
[20]  Wang, H., Xiao, S. and Zhang, C. (2021) Novel Planar Auxetic Metamaterial Perforated with Orthogonally Aligned Oval‐Shaped Holes and Machine Learning Solutions. Advanced Engineering Materials, 23, Article ID: 2100102.
https://doi.org/10.1002/adem.202100102
[21]  Wang, H., Zhang, C., Qin, Q. and Bai, Y. (2022) Tunable Compression-Torsion Coupling Effect in Novel Cylindrical Tubular Metamaterial Architected with Boomerang-Shaped Tetrachiral Elements. Materials Today Communications, 31, Article ID: 103483.
https://doi.org/10.1016/j.mtcomm.2022.103483
[22]  Zhang, C., Xiao, S., Qin, Q. and Wang, H. (2021) Tunable Compressive Properties of a Novel Auxetic Tubular Material with Low Stress Level. Thin-Walled Structures, 164, Article ID: 107882.
https://doi.org/10.1016/j.tws.2021.107882
[23]  Yu, J., Shi, X., Feng, Y., Chang, J., Liu, J., Xi, H., et al. (2023) Machine Learning-Based Design and Optimization of Double Curved Beams for Multi-Stable Honeycomb Structures. Extreme Mechanics Letters, 65, Article ID: 102109.
https://doi.org/10.1016/j.eml.2023.102109
[24]  Harkati, A., Boutagouga, D., Harkati, E., Bezazi, A., Scarpa, F. and Ouisse, M. (2020) In-plane Elastic Constants of a New Curved Cell Walls Honeycomb Concept. Thin-Walled Structures, 149, Article ID: 106613.
https://doi.org/10.1016/j.tws.2020.106613
[25]  Liu, N., Mehreganian, N. and Sareh, P. (2024) Never Better than 5/6: The Fundamental Limit of Energy Absorption Efficiency for Negative-Stiffness Curved-Beam Honeycombs. Materials & Design, 243, Article ID: 113024.
https://doi.org/10.1016/j.matdes.2024.113024
[26]  Wu, W., Hu, W., Qian, G., Liao, H., Xu, X. and Berto, F. (2019) Mechanical Design and Multifunctional Applications of Chiral Mechanical Metamaterials: A Review. Materials & Design, 180, Article ID: 107950.
https://doi.org/10.1016/j.matdes.2019.107950
[27]  Jin, M., Hou, X., Zhao, W. and Deng, Z. (2024) Symplectic Stiffness Method for the Buckling Analysis of Hierarchical and Chiral Cellular Honeycomb Structures. European Journal of MechanicsA/Solids, 103, Article ID: 105164.
https://doi.org/10.1016/j.euromechsol.2023.105164
[28]  Mizzi, L., Simonetti, A. and Spaggiari, A. (2024) Mechanical Properties and Failure Modes of Additively-Manufactured Chiral Metamaterials Based on Euclidean Tessellations: An Experimental and Finite Element Study. Rapid Prototyping Journal, 30, 59-71.
https://doi.org/10.1108/rpj-06-2023-0190
[29]  Chen, L., Cui, C.Y., Cui, X.G. and Lu, J.Z. (2024) Cuttlebone-inspired Honeycomb Structure Realizing Good Out-of-Plane Compressive Performances Validated by DLP Additive Manufacturing. Thin-Walled Structures, 198, Article ID: 111768.
https://doi.org/10.1016/j.tws.2024.111768
[30]  Li, A., Lei, Y., Bai, Y. and Wang, H. (2023) Improved Lightweight Corrugated Network Design to Auxetic Perforated Metamaterial. International Journal of Mechanical Sciences, 243, Article ID: 108040.
https://doi.org/10.1016/j.ijmecsci.2022.108040
[31]  Wang, M., Wu, H., Yang, L., Chen, A., Chen, P., Wang, H., et al. (2022) Structure Design of Arc-Shaped Auxetic Metamaterials with Tunable Poisson’s Ratio. Mechanics of Advanced Materials and Structures, 30, 1426-1436.
https://doi.org/10.1080/15376494.2022.2033890

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133