|
400 km/h高速铁路隧道初始压缩波传播过程轨道影响特征研究
|
Abstract:
文章基于三维仿真软件,采用隧道净空面积为100 m2、CRTSⅢ型轨道板及60 kg/m的钢轨模型,对有无轨道影响的时速400 km/h的高速铁路隧道初始压缩波短距离传播过程中湍流流场进行CFD数值模拟。当时速400 km/h的列车鼻尖抵达隧道入口后,由于活塞效应产生的初始压缩波在传播至隧道7倍当量直径距离处会由很强的三维特性转化为一维平面波,而后以当地声速向前传播。一维平面波在传播过程中由于非线性效应将使得压力梯度逐渐上升甚至“激化”,板式轨道被认为是压力梯度上升的原因之一。研究表明,在初始压缩波在隧道内传播时,板式轨道对隧道内的流场速度大小影响甚微,但却对流场内涡及速度流向影响较大,隧道内部流场更为复杂。其次,轨道使压缩波传播过程的压力场向间隙与轨枕间横向传播并产生垂向涡旋,令传播方向具有一定的三维性,造成隧道纵向方向压力分布差异,并在隧底水平断面上呈现“中间凸,两边凹”的趋势。同时,板式轨道对压缩波传播过程中声压级及频响特征均有一定影响。最后,有轨道工况的初始压缩波压力幅值略大于无轨道工况,但压力幅值的最大差异仅3.86 Pa,增大率仅0.17%;有轨道工况的初始压缩波最大压力梯度值均大于无轨道工况,压力梯度幅值的最大差异为259.13 Pa/s,增大率为2.03%,板式轨道对初始压缩波的短距离传播过程中有小幅度的“激化”倾向。
Based on 3D simulation software, this paper uses a tunnel headroom area of 100 m2, CRTS type III track plate, and 60 kg/m rail model to conduct CFD numerical simulation of turbulent flow field during the short distance propagation of initial compression waves in a 400 km/h high-speed railway tunnel with or without track influence. When the nose tip of the train with a speed of 400 km/h arrives at the tunnel entrance, the initial compression wave generated by the piston effect will be transformed into a one-dimensional plane wave with strong three-dimensional characteristics when propagating to a distance of 7 times the equivalent diameter of the tunnel, and then propagate forward at the local sound speed. The pressure gradient of the one-dimensional plane wave will gradually rise or even “intensify” due to the nonlinear effect in the propagation process, and the plate orbit is considered one of the reasons for the rise of the pressure gradient. The results show that when the initial compression wave propagates in the tunnel, the plate track has little influence on the velocity of the flow field in the tunnel, but it has a great influence on the vortex and velocity direction in the tunnel and the flow field in the tunnel is more complicated. Secondly, the track makes the pressure field of the compression wave propagation process propagate horizontally between the gap and the sleeper and produce a vertical vortex, which makes the propagation direction have a certain three-dimensional character, resulting in the difference in the longitudinal direction of the tunnel pressure distribution, and the horizontal section of the tunnel bottom shows a trend of “convex in the middle and concave on both sides”. At the same time, the plate track has a certain
[1] | 梅元贵, 等. 高速铁路隧道空气动力学[M]. 北京: 科学出版社, 2009. |
[2] | 小澤智. トンネル内の圧力波の変形とトンネル出口微気圧波[J]. 日本流体力学会誌「ながれ」, 1995, 14(3): 191-197. |
[3] | Ehrendorfer, K. and Sockel, H. (1997) The Influence of Measures near the Portal of Railway Tunnels on the Sonic Boom. In: BHR Group Conference Series Publication, Mechanical Engineering Publications Limited, Vol. 27, 863-876. |
[4] | Ehrendorfer, K., Reiterer, M. and Sockel, H. (2002) Numerical Investigation of the Micro Pressure Wave. In: Schulte-Werning, B., et al., Eds., TRANSAERO: A European Initiative on Transient Aerodynamics for Railway System Optimisation, Springer, 321-341. https://doi.org/10.1007/978-3-540-45854-8_26 |
[5] | 福田傑, 飯田雅宣, 前田達夫, 等. 高速鉄道のスラブ軌道トンネル内を伝ぱする圧縮波の解析: (第1報, 現地測定と一次元数値解析) [J]. 日本機械学会論文集B編, 1998, 64(621): 1391-1397. |
[6] | Degen, K.G., Gerbig, C. and Onnich, H. (2008) Acoustic Assessment of Micro-Pressure Waves Radiating from Tunnel Exits of DB High-Speed Lines. In: Schulte-Werning, B., et al., Eds., Noise and Vibration Mitigation for Rail Transportation Systems, Springer, 48-55. https://doi.org/10.1007/978-3-540-74893-9_7 |
[7] | Miyachi, T., Saito, S., Fukuda, T., Sakuma, Y., Ozawa, S., Arai, T., et al. (2015) Propagation Characteristics of Tunnel Compression Waves with Multiple Peaks in the Waveform of the Pressure Gradient: Part 1: Field Measurements and Mathematical Model. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230, 1297-1308. https://doi.org/10.1177/0954409715593305 |
[8] | 宮本雅章, 有田貴司, 大森洋志, 等. 超高速鉄道トンネル内に発生する圧力変動履歴の再現と覆工構造の疲労に関する検討[J]. 土木学会論文集 A1 (構造∙地震工学), 2020, 76(1): 94-109. |
[9] | Iyer, R.S., Kim, D.H. and Kim, H.D. (2023) Effect of Ambient Air Temperature on the Compression Wave Propagating along a Railway Tunnel. Journal of Applied Fluid Mechanics, 16, 905-919. |
[10] | Saito, S. (2024) Alleviation of Micro-Pressure Waves Radiated from Tunnel Hoods. Tunnelling and Underground Space Technology, 147, 105703. https://doi.org/10.1016/j.tust.2024.105703 |
[11] | 王维洲, 钟登朝, 胖涛, 等. 400 km/h高速铁路隧道洞口等截面无开孔扩大型缓冲结构气动效应分析[J]. 高速铁路技术, 2021, 12(5): 57-61. |
[12] | 刘金通. 高铁隧道内压缩波传播规律及微气压波声学特性初步分析[D]: [硕士学位论文]. 成都: 西南交通大学, 2018. |
[13] | Wang, H., Vardy, A.E. and Pokrajac, D. (2016) Perforated Tunnel Exit Regions and Micro-Pressure Waves: Geometrical Influence. Proceedings of the Institution of Civil Engineers—Engineering and Computational Mechanics, 169, 70-85. https://doi.org/10.1680/jencm.15.00026 |
[14] | Li, W., Liu, T., Huo, X., Chen, Z., Guo, Z. and Li, L. (2019) Influence of the Enlarged Portal Length on Pressure Waves in Railway Tunnels with Cross-Section Expansion. Journal of Wind Engineering and Industrial Aerodynamics, 190, 10-22. https://doi.org/10.1016/j.jweia.2019.03.031 |
[15] | Lin, T., Yang, M., Zhang, L., Wang, T. and Zhong, S. (2024) Influence of Bionics Shark Gills Tunnel Portal on the Micro-Pressure Wave at the Tunnel Exit. Tunnelling and Underground Space Technology, 144, Article ID: 105542. https://doi.org/10.1016/j.tust.2023.105542 |
[16] | Doi, T., Ogawa, T., Masubuchi, T. and Kaku, J. (2010) Development of an Experimental Facility for Measuring Pressure Waves Generated by High-Speed Trains. Journal of Wind Engineering and Industrial Aerodynamics, 98, 55-61. https://doi.org/10.1016/j.jweia.2009.09.002 |