|
Sustainable Energy 2024
一种甲烷掺氢燃烧的简化动力学模型
|
Abstract:
作为最清洁的能源,氢燃料的使用引发了广泛关注。建议将甲烷和氢气混合以扩大氢气的规模应用。甲烷掺氢燃烧的燃烧机理的研究在燃烧过程中具有重要意义。本文通过数值分析不同反应机理下甲烷/氢气/空气火焰的层流燃烧速度,确定FFCM-1机理为最适合于甲烷掺氢燃烧数值模拟的详细化学反应机理,然后进行机理简化,得到了28个物种和185个反应的骨架模型。基于FFCM-1机理和简化机理,建立层流预混火焰、部分预混火焰、扩散火焰等火焰模型,在不同的
条件下对简化的骨架机理和详细的FFCM-1机理的层流燃烧速度、点火延迟时间、火焰峰值温度、熄火极限等燃烧特性进行验证。结果表明,简化前后的机制表现出良好的一致性,为实际燃烧中二维或三维的CH4/H2火焰的CFD数值研究提供一定的参考价值。
The use of hydrogen fuel as the cleanest source of energy has generated a great deal of interest. Blending of methane and hydrogen is proposed to scale up the application of hydrogen. The study of the combustion mechanism of methane-hydrogen doped combustion is of great significance in the combustion process. In this paper, by numerically analyzing the laminar burning velocity of methane/hydrogen/air flames under different reaction mechanisms, the FFCM-1 mechanism is identified as the most suitable detailed chemical reaction mechanism for numerical simulation of methane-hydrogen doped combustion, and then the mechanism is simplified to obtain a skeleton model with 28 species and 185 reactions. Based on the FFCM-1 mechanism and the simplified mechanism, flame models such as laminar premixed flame, partially premixed flame, and diffusion flame were established, and the combustion characteristics such as laminar burning velocity, ignition delay time, peak flame temperature, and flame quenching limit of the simplified skeleton mechanism and detailed FFCM-1 mechanism were verified under different
conditions. The results show that the mechanisms before and after simplification exhibit good consistency, which provides some reference value for CFD numerical studies of two-dimensional or three-dimensional CH4/H2 flames in actual combustion.
[1] | Ren, S., Jones, W.P. and Wang, X. (2023) Hydrogen-Enriched Methane Combustion in a Swirl Vortex-Tube Combustor. Fuel, 334, Article ID: 126582. https://doi.org/10.1016/j.fuel.2022.126582 |
[2] | Berwal, P., Solagar, S. and Kumar, S. (2022) Experimental Investigations on Laminar Burning Velocity Variation of CH4 + H2 + Air Mixtures at Elevated Temperatures. International Journal of Hydrogen Energy, 47, 16686-16697. https://doi.org/10.1016/j.ijhydene.2022.03.155 |
[3] | Zhao, Y., McDonell, V. and Samuelsen, S. (2019) Influence of Hydrogen Addition to Pipeline Natural Gas on the Combustion Performance of a Cooktop Burner. International Journal of Hydrogen Energy, 44, 12239-12253. https://doi.org/10.1016/j.ijhydene.2019.03.100 |
[4] | Zhao, Y., McDonell, V. and Samuelsen, S. (2019) Experimental Assessment of the Combustion Performance of an Oven Burner Operated on Pipeline Natural Gas Mixed with Hydrogen. International Journal of Hydrogen Energy, 44, 26049-26062. https://doi.org/10.1016/j.ijhydene.2019.08.011 |
[5] | Sun, M., Huang, X., Hu, Y. and Lyu, S. (2022) Effects on the Performance of Domestic Gas Appliances Operated on Natural Gas Mixed with Hydrogen. Energy, 244, Article ID: 122557. https://doi.org/10.1016/j.energy.2021.122557 |
[6] | Erdener, B.C., Sergi, B., Guerra, O.J., Lazaro Chueca, A., Pambour, K., Brancucci, C., et al. (2023) A Review of Technical and Regulatory Limits for Hydrogen Blending in Natural Gas Pipelines. International Journal of Hydrogen Energy, 48, 5595-5617. https://doi.org/10.1016/j.ijhydene.2022.10.254 |
[7] | Cristello, J.B., Yang, J.M., Hugo, R., Lee, Y. and Park, S.S. (2023) Feasibility Analysis of Blending Hydrogen into Natural Gas Networks. International Journal of Hydrogen Energy, 48, 17605-17629. https://doi.org/10.1016/j.ijhydene.2023.01.156 |
[8] | Zhao, Q., Liu, X., Jiao, A., Xu, H., Liu, F. and Liao, X. (2024) A Simplified Mechanism of Hydrogen Addition to Methane Combustion for the Pollutant Emission Characteristics of a Gas-Fired Boiler. International Journal of Hydrogen Energy, 49, 1376-1390. https://doi.org/10.1016/j.ijhydene.2023.09.275 |
[9] | Li, R., He, G., Qin, F., Pichler, C. and Konnov, A.A. (2019) Comparative Analysis of Detailed and Reduced Kinetic Models for CH4 + H2 Combustion. Fuel, 246, 244-258. https://doi.org/10.1016/j.fuel.2019.02.132 |
[10] | PEPIOTDESJARDINS, P. and PITSCH, H. (2008) An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms. Combustion and Flame, 154, 67-81. https://doi.org/10.1016/j.combustflame.2007.10.020 |
[11] | Liu, Y., Babaee, H., Givi, P., Chelliah, H.K., Livescu, D. and Nouri, A.G. (2024) Skeletal Reaction Models for Methane Combustion. Fuel, 357, Article ID: 129581. https://doi.org/10.1016/j.fuel.2023.129581 |
[12] | Jiang, Y., Alamo, G.d., Gruber, A., Bothien, M.R., Seshadri, K. and Williams, F.A. (2019) A Skeletal Mechanism for Prediction of Ignition Delay Times and Laminar Premixed Flame Velocities of Hydrogen-Methane Mixtures under Gas Turbine Conditions. International Journal of Hydrogen Energy, 44, 18573-18585. https://doi.org/10.1016/j.ijhydene.2019.05.068 |
[13] | Lu, T. and Law, C. (2008) Strategies for Mechanism Reduction for Large Hydrocarbons: N-Heptane. Combustion and Flame, 154, 153-163. https://doi.org/10.1016/j.combustflame.2007.11.013 |
[14] | Liu, X., Zhu, G., Asim, T. and Mishra, R. (2023) Combustion Characterization of Hybrid Methane-Hydrogen Gas in Domestic Swirl Stoves. Fuel, 333, Article ID: 126413. https://doi.org/10.1016/j.fuel.2022.126413 |
[15] | Natarajan, J., Lieuwen, T. and Seitzman, J. (2007) Laminar Flame Speeds of H2/CO Mixtures: Effect of CO2 Dilution, Preheat Temperature, and Pressure. Combustion and Flame, 151, 104-119. https://doi.org/10.1016/j.combustflame.2007.05.003 |
[16] | Wang, Y. and Verhelst, S. (2024) Comparative Analysis and Optimisation of Hydrogen Combustion Mechanism for Laminar Burning Velocity Calculation in Combustion Engine Modelling. International Journal of Hydrogen Energy, 56, 880-893. https://doi.org/10.1016/j.ijhydene.2023.12.214 |
[17] | Eckart, S., Rong, F.Z., Hasse, C., Krause, H. and Scholtissek, A. (2023) Combined Experimental and Numerical Study on the Extinction Limits of Non-Premixed H2/CH4 Counterflow Flames with Varying Oxidizer Composition. International Journal of Hydrogen Energy, 48, 14068-14078. https://doi.org/10.1016/j.ijhydene.2022.12.061 |
[18] | Smith, G.P. (1999) GRI-Mech 3.0. http://www.me.berkley.edu/gri_mech/ |
[19] | Metcalfe, W.K., Burke, S.M., Ahmed, S.S. and Curran, H.J. (2013) A Hierarchical and Comparative Kinetic Modeling Study of C1-C2 Hydrocarbon and Oxygenated Fuels. International Journal of Chemical Kinetics, 45, 638-675. https://doi.org/10.1002/kin.20802 |
[20] | Smith, G.P., Tao, Y. and Wang, H. (2016) Foundational Fuel Chemistry Model Version 1.0 (FFCM-1). https://nanoenergy.stanford.edu/ffcm1 |
[21] | Wang, D., Ji, C., Wang, S., Meng, H., Wang, Z. and Yang, J. (2020) Further Understanding the Premixed Methane/Hydrogen/Air Combustion by Global Reaction Pathway Analysis and Sensitivity Analysis. Fuel, 259, Article ID: 116190. https://doi.org/10.1016/j.fuel.2019.116190 |
[22] | Jayachandran, J. and Egolfopoulos, F.N. (2017) Thermal and Ludwig-Soret Diffusion Effects on Near-Boundary Ignition Behavior of Reacting Mixtures. Proceedings of the Combustion Institute, 36, 1505-1511. https://doi.org/10.1016/j.proci.2016.06.098 |
[23] | Lowry, W., de Vries, J., Krejci, M., Petersen, E., Serinyel, Z., Metcalfe, W., et al. (2010) Laminar Flame Speed Measurements and Modeling of Pure Alkanes and Alkane Blends at Elevated Pressures. ASME Turbo Expo 2010: Power for Land, Sea, and Air, Glasgow, 14-18 June 2010, 855-873. https://doi.org/10.1115/gt2010-23050 |
[24] | Halter, F., Chauveau, C., Djebaïli-Chaumeix, N. and Gökalp, I. (2005) Characterization of the Effects of Pressure and Hydrogen Concentration on Laminar Burning Velocities of Methane-Hydrogen-Ar Mixtures. Proceedings of the Combustion Institute, 30, 201-208. https://doi.org/10.1016/j.proci.2004.08.195 |
[25] | Goswami, M., Derks, S.C.R., Coumans, K., Slikker, W.J., de Andrade Oliveira, M.H., Bastiaans, R.J.M., et al. (2013) The Effect of Elevated Pressures on the Laminar Burning Velocity of Methane + Air Mixtures. Combustion and Flame, 160, 1627-1635. https://doi.org/10.1016/j.combustflame.2013.03.032 |
[26] | Hu, E., Huang, Z., He, J., Jin, C. and Zheng, J. (2009) Experimental and Numerical Study on Laminar Burning Characteristics of Premixed Methane-Hydrogen-Air Flames. International Journal of Hydrogen Energy, 34, 4876-4888. https://doi.org/10.1016/j.ijhydene.2009.03.058 |
[27] | Niemeyer, K.E., Sung, C. and Raju, M.P. (2010) Skeletal Mechanism Generation for Surrogate Fuels Using Directed Relation Graph with Error Propagation and Sensitivity Analysis. Combustion and Flame, 157, 1760-1770. https://doi.org/10.1016/j.combustflame.2009.12.022 |
[28] | Zhang, Y., Huang, Z., Wei, L., Zhang, J. and Law, C.K. (2012) Experimental and Modeling Study on Ignition Delays of Lean Mixtures of Methane, Hydrogen, Oxygen, and Argon at Elevated Pressures. Combustion and Flame, 159, 918-931. https://doi.org/10.1016/j.combustflame.2011.09.010 |
[29] | Karimi, M., Ochs, B., Liu, Z., Ranjan, D. and Sun, W. (2019) Measurement of Methane Autoignition Delays in Carbon Dioxide and Argon Diluents at High Pressure Conditions. Combustion and Flame, 204, 304-319. https://doi.org/10.1016/j.combustflame.2019.03.020 |
[30] | Williams, F.A., Seshadri, K. and Cattolica, R. (2010) San Diego Mechanism. https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html |
[31] | Satija, A., Yuan, S., Naik, S.V. and Lucht, R.P. (2015) Vibrational CARS Thermometry and One-Dimensional Numerical Simulations in CH4/H2/Air Partially-Premixed Flames. International Journal of Hydrogen Energy, 40, 6959-6969. https://doi.org/10.1016/j.ijhydene.2015.03.151 |