全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Reliability Analysis of a 2D Model of a Solar Still Developed Using Comsol Multiphysics

DOI: 10.4236/ojmsi.2025.131002, PP. 20-50

Keywords: Solar Desalination, Passive Cascade Solar Still, Distilled Water Production, Pano Rano

Full-Text   Cite this paper   Add to My Lib

Abstract:

Solar stills represent a promising solution for desalinating saline waters, providing a sustainable alternative in regions with limited access to drinking water. This study evaluates the reliability of a two-dimensional (2D) numerical model of a solar still, developed using COMSOL? Multiphysics software, focusing on a passive cascading device called “Pano Rano.” Two physical prototypes were constructed: one with a standard concrete basin and the other with acrylic plastic. The simulations revealed significant differences in theoretical yield based on the material used. With a radiation of 1200 W/m2, the acrylic prototype displayed an evaporation of 4455.53 mL/m2 and a production of 2925.98 mL/m2 of distilled water, while the concrete model showed an evaporation of 2109.95 mL/m2 and produced 1383.93 mL/m2 of distilled water. The results indicate that evaporation significantly exceeds condensation, highlighting an underutilized evaporation potential. The evaluation of the numerical model’s performance against experimental results was conducted using the mean squared error (MSE) and the coefficient of determination (R2). The best performance was observed in summer (MSE of 16.24; R2 of 0.95), while winter results were less convincing (MSE of 204.77; R2 of ?2.78). This variability underscores the model’s limitations and the need for future research. The study also demonstrates that the choice of basin material significantly influences productivity, with acrylic plastic outperforming concrete in terms of thermal efficiency.

References

[1]  Ahmed, F.E., Khalil, A. and Hilal, N. (2021) Emerging Desalination Technologies: Current Status, Challenges and Future Trends. Desalination, 517, Article ID: 115183.
https://doi.org/10.1016/j.desal.2021.115183
[2]  Randrianantenaina, M. (2024) Détermination et analyse de la fiabilité d’un modèle de prédiction de performances d’un distillateur solaire: Modélisation 2d des paramètres de conception sur le logiciel comsol® multiphysics. Master’s Thesis, University of Antananativo.
[3]  Lovasoa, A.A. (2022) Projet d’étude comparative des distillateurs solaires à effet de serre en vue de la production d’eau potable dans la région d’Ambovombe-Androy au sein de l’ong Tatirano. Institut Supérieur de Technologie d’Antananarivo.
[4]  Kalogirou, S.A. (2018) Introduction to Renewable Energy Powered Desalination. In: Gude, V.G., Ed., Renewable Energy Powered Desalination Handbook, Elsevier, 3-46.
https://doi.org/10.1016/b978-0-12-815244-7.00001-5
[5]  EL Harrak, N., Elazhar, F., Belhamidi, S., Elazhar, M., Touir, J. and Elmidaoui, A. (2015) Comparaison des performances des deux procédés membranaires: La Nanofiltration et de l’Osmose inverse dans le Dessalement des eaux saumâtres. Journal of Materials and Environmental Science, 6, 383-390.
[6]  Maazouzi, A., Ketteb, A. and Badric, A. (2007) Etude de procédés de filtration sur sable de la région de Béchar en pré traitement de l’eau potable. Desalination, 206, 358-368.
https://doi.org/10.1016/j.desal.2006.01.040
[7]  Campione, A., Gurreri, L., Ciofalo, M., Micale, G., Tamburini, A. and Cipollina, A. (2018) Electrodialysis for Water Desalination: A Critical Assessment of Recent Developments on Process Fundamentals, Models and Applications. Desalination, 434, 121-160.
https://doi.org/10.1016/j.desal.2017.12.044
[8]  Kabeel, A.E., Omara, Z.M., Essa, F.A. and Abdullah, A.S. (2016) Retracted: Solar Still with Condenser—A Detailed Review. Renewable and Sustainable Energy Reviews, 59, 839-857.
https://doi.org/10.1016/j.rser.2016.01.020
[9]  Elango, C., Gunasekaran, N. and Sampathkumar, K. (2015) Thermal Models of Solar Still—A Comprehensive Review. Renewable and Sustainable Energy Reviews, 47, 856-911.
https://doi.org/10.1016/j.rser.2015.03.054
[10]  Kaviti, A.K., Yadav, A. and Shukla, A. (2016) Inclined Solar Still Designs: A Review. Renewable and Sustainable Energy Reviews, 54, 429-451.
https://doi.org/10.1016/j.rser.2015.10.027
[11]  Abujazar, M.S.S., Fatihah, S., Rakmi, A.R. and Shahrom, M.Z. (2016) The Effects of Design Parameters on Productivity Performance of a Solar Still for Seawater Desalination: A Review. Desalination, 385, 178-193.
https://doi.org/10.1016/j.desal.2016.02.025
[12]  Selvaraj, K. and Natarajan, A. (2018) Factors Influencing the Performance and Productivity of Solar Stills—A Review. Desalination, 435, 181-187.
https://doi.org/10.1016/j.desal.2017.09.031
[13]  Panchal, H.N. and Patel, S. (2017) An Extensive Review on Different Design and Climatic Parameters to Increase Distillate Output of Solar Still. Renewable and Sustainable Energy Reviews, 69, 750-758.
https://doi.org/10.1016/j.rser.2016.09.001
[14]  Nafey, A.S., Abdelkader, M., Abdelmotalip, A. and Mabrouk, A.A. (2000) Parameters Affecting Solar Still Productivity. Energy Conversion and Management, 41, 1797-1809.
https://doi.org/10.1016/s0196-8904(99)00188-0
[15]  Jathar, L.D., Ganesan, S., Shahapurkar, K., Soudagar, M.E.M., Mujtaba, M.A., Anqi, A.E., et al. (2021) Effect of Various Factors and Diverse Approaches to Enhance the Performance of Solar Stills: A Comprehensive Review. Journal of Thermal Analysis and Calorimetry, 147, 4491-4522.
https://doi.org/10.1007/s10973-021-10826-y
[16]  Badran, O.O. (2007) Experimental Study of the Enhancement Parameters on a Single Slope Solar Still Productivity. Desalination, 209, 136-143.
https://doi.org/10.1016/j.desal.2007.04.022
[17]  Burbano, A.M. (2024) Evaluation of Basin and Insulating Materials in Solar Still Prototype for Solar Distillation Plant at Kamusuchiwo Community, High Guajira. Renewable Energy and Power Quality Journal, 12, 547-552.
https://doi.org/10.24084/repqj12.395
[18]  Gnanadason, M.K., Kumar, P.S., Wilson, V.H., Kumaravel, A. and Jebadason, B. (2013) Comparison of Performance Analysis between Single Basin Solar Still Made up of Copper and GI. International Journal of Innovative Research in Science, Engineering and Technology, 2, 3175-3183.
[19]  Sommariva, C., Hogg, H. and Callister, K. (2001) Forty-Year Design Life: The Next Target Material Selection and Operating Conditions in Thermal Desalination Plants. Desalination, 136, 169-176.
https://doi.org/10.1016/s0011-9164(01)00179-5
[20]  Sharon, H. and Reddy, K.S. (2015) A Review of Solar Energy Driven Desalination Technologies. Renewable and Sustainable Energy Reviews, 41, 1080-1118.
https://doi.org/10.1016/j.rser.2014.09.002
[21]  Gawande, J.S., Bhuyar, L.B. and Deshmukh, S.J. (2013) Effect of Depth of Water on the Performance of Stepped Type Solar Still. International Journey of Energy Engineering, 3, 137-143.
[22]  Prakash, P. and Velmurugan, V. (2015) Parameters Influencing the Productivity of Solar Stills—A Review. Renewable and Sustainable Energy Reviews, 49, 585-609.
https://doi.org/10.1016/j.rser.2015.04.136
[23]  Khare, V.R., Singh, A.P., Kumar, H. and Khatri, R. (2017) Modelling and Performance Enhancement of Single Slope Solar Still Using CFD. Energy Procedia, 109, 447-455.
https://doi.org/10.1016/j.egypro.2017.03.064
[24]  Akash, B.A., Mohsen, M.S. and Nayfeh, W. (2000) Experimental Study of the Basin Type Solar Still under Local Climate Conditions. Energy Conversion and Management, 41, 883-890.
https://doi.org/10.1016/s0196-8904(99)00158-2
[25]  Goshayeshi, H.R. and Safaei, M.R. (2019) Effect of Absorber Plate Surface Shape and Glass Cover Inclination Angle on the Performance of a Passive Solar Still. International Journal of Numerical Methods for Heat & Fluid Flow, 30, 3183-3198.
https://doi.org/10.1108/hff-01-2019-0018
[26]  Bhardwaj, R., ten Kortenaar, M.V. and Mudde, R.F. (2015) Maximized Production of Water by Increasing Area of Condensation Surface for Solar Distillation. Applied Energy, 154, 480-490.
https://doi.org/10.1016/j.apenergy.2015.05.060
[27]  Aybar, H.Ş. (2006) Mathematical Modeling of an Inclined Solar Water Distillation System. Desalination, 190, 63-70.
https://doi.org/10.1016/j.desal.2005.07.015
[28]  Ziabari, F.B., Sharak, A.Z., Moghadam, H. and Tabrizi, F.F. (2013) Theoretical and Experimental Study of Cascade Solar Stills. Solar Energy, 90, 205-211.
https://doi.org/10.1016/j.solener.2012.12.019
[29]  Thakur, A.K. and Pathak, S.K. (2017) Single Basin Solar Still Varying Depth of Water: Optimization by Computational Method, Iranian Journal of Energy and Environment, 8, 216-223.
[30]  Gnanaraj, S.J.P. and Annaamalai, M.G.L. (2022) Enhancing Solar Still Productivity by Optimizing Operational Parameters. Desalination and Water Treatment, 254, 1-14.
https://doi.org/10.5004/dwt.2022.28287
[31]  Gnanavel, C., Saravanan, R. and Chandrasekaran, M. (2021) CFD Analysis of Solar Still with PCM. Materials Today: Proceedings, 37, 694-700.
https://doi.org/10.1016/j.matpr.2020.05.638
[32]  Panchal, H.N. and Patel, N. (2017) ANSYS CFD and Experimental Comparison of Various Parameters of a Solar Still. International Journal of Ambient Energy, 39, 551-557.
https://doi.org/10.1080/01430750.2017.1318785
[33]  Kumar, D., Pandey, A., Prakash, O., Kumar, A. and DevRoy, A. (2019) Simulation, Modeling, and Experimental Studies of Solar Distillation Systems. In: Gruber, J., Ed., HandelsrechtSchnell Erfasst, Springer, 149-166.
https://doi.org/10.1007/978-981-13-6887-5
[34]  Rahbar, N. and Esfahani, J.A. (2013) Productivity Estimation of a Single-Slope Solar Still: Theoretical and Numerical Analysis. Energy, 49, 289-297.
https://doi.org/10.1016/j.energy.2012.10.023
[35]  Sonawane, C., Alrubaie, A.J., Panchal, H., Chamkha, A.J., Jaber, M.M., Oza, A.D., et al. (2022) Investigation on the Impact of Different Absorber Materials in Solar Still Using CFD Simulation—Economic and Environmental Analysis. Water, 14, Article 3031.
https://doi.org/10.3390/w14193031
[36]  Chaurasia, A.S. (2021) Computational Fluid Dynamics and COMSOL Multiphysics. Apple Academic Press.
https://doi.org/10.1201/9781003180500
[37]  Hafs, H., Asbik, M., Boushaba, H., Koukouch, A., Zaaoumi, A., Bah, A., et al. (2021) Numerical Simulation of the Performance of Passive and Active Solar Still with Corrugated Absorber Surface as Heat Storage Medium for Sustainable Solar Desalination Technology. Groundwater for Sustainable Development, 14, Article ID: 100610.
https://doi.org/10.1016/j.gsd.2021.100610
[38]  Yadav, S. and Sudhakar, K. (2015) Different Domestic Designs of Solar Stills: A Review. Renewable and Sustainable Energy Reviews, 47, 718-731.
https://doi.org/10.1016/j.rser.2015.03.064
[39]  COMSOL (2018) Heat Transfer Module User’s Guide. COMSOL Multiphysics® v. 5.4. 686-690.
[40]  Hodson, T.O. (2022) Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to Use Them or Not. Geoscientific Model Development, 15, 5481-5487.
https://doi.org/10.5194/gmd-15-5481-2022
[41]  Chicco, D., Warrens, M.J. and Jurman, G. (2021) The Coefficient of Determination R-Squared Is More Informative than SMAPE, MAE, MAPE, MSE and RMSE in Regression Analysis Evaluation. PeerJ Computer Science, 7, e623.
https://doi.org/10.7717/peerj-cs.623
[42]  Al-Hinai, H., Al-Nassri, M.S. and Jubran, B.A. (2002) Effect of Climatic, Design and Operational Parameters on the Yield of a Simple Solar Still. Energy Conversion and Management, 43, 1639-1650.
https://doi.org/10.1016/s0196-8904(01)00120-0

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133