全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Biogas Refining for Better Physicochemical Characteristics and Good Yield

DOI: 10.4236/nr.2024.1510016, PP. 255-272

Keywords: Digester, Refined Biogas, Purification, Technological Efficiency, Electricity

Full-Text   Cite this paper   Add to My Lib

Abstract:

The general objective of this present work is to refine biogas in order to use it in an engine to produce electricity. The specific objective is focused on the availability and creation of energy, environmental protection, and the provision of biofertilizers to name a few. We worked on industrial applications and data for two years. The calculation methods and the most important parameters measured and observed during the work with various types of equations and monitoring, such as the search for the useful volume of the digester, the retention time, the organic load rate, the daily production of biogas, and the technological yield were made. The biogas produced was refined following the standards and purification procedure and the presence of H2S brought back to a ppm lower than 200. To better characterize our biogas, a weekly, monthly and annual monitoring was done. The aim of this monitoring was to understand the production curve and bring technological elements of positive change by working on the pH, the temperature, the ratio and inhibitors. Thus, at the beginning, at 25?C and 1 atm, the 6 gas molecules had a volume of 146.61 liters, so for 1 g of COD consumed, there was 0.7636 L of gas with 50% CH4 and 50% CO2. We therefore sought to make this result higher with a biogas rate of 60% CH4 and 40% CO2. It is observed that the values can vary by ±10% (sometimes more) depending on the implementation conditions.

References

[1]  Adannou, H.A., Goni, S., Abderaman, M.B., Khayal, M.Y., Khamis, A.A., Aidara, M., et al. (2019) Influence of Climate Temperature on the Valorization of Dung-Wastewater Slaughterhouse Biogas in Two Regions: In Chad and Senegal. Natural Resources, 10, 81-95.
https://doi.org/10.4236/nr.2019.104006
[2]  Demeyer, A., Jacob, F., Jay, M., Menguy, G. and Perrier, J. (1980) La Conversion bioénergétique du rayonnement solaire et les biotechnologies. Edition Tec & Doc., 213-215.
[3]  Méthanisation (n.d.) Etapes de la digestion anaérobie.
http://www.methanisation.info/etapes.html
[4]  Surendra, K.C., Takara, D., Hashimoto, A.G. and Khanal, S.K. (2014) Biogas as a Sustainable Energy Source for Developing Countries: Opportunities and Challenges. Renewable and Sustainable Energy Reviews, 31, 846-859.
https://doi.org/10.1016/j.rser.2013.12.015
[5]  Afilal, M.E., Belkhadir, N., Daoudi, H. and Elasri, O. (2013) Fermentation méthanique des différents substrats organiques, Journal of Materials and Environmental Science, 4, 11-16.
[6]  Douag-Tirichine, N., Benkhelifa, A. and Bousdira, K. (2023) Production de biogaz à partir des déjections bovines en milieu aride: Cas du M’Zab (Algérie). Journal of Renewable Energies, 17, 419-426.
https://doi.org/10.54966/jreen.v17i3.455
[7]  Observer (2006) 6e Bilan. État des énergies renouvelables en Europe. Rapport Technique, EurObserver.
[8]  Vechiu, I. (2005) Modélisation et analyse de l’intégration des énergies renouvelables dans un réseau autonome. Thèse de Doctorat, Université du Havre.
[9]  Lusk, P.D. (1998) Methane Recovery from Animal Manures. The Current Opportunities Case-Book. Rapport Technique, National Renewable Energy Laboratory.
[10]  Godon J.-J. (2008) Aspects biochimiques et microbiologiques de la méthanisation. In: Moletta, R., Ed., La Méthanisation, Editions Tec & Doc., 62-85.
[11]  Moletta, R. and Verstraete, W. (2008) La méthanisation dans la problématique énergétique et environnementale. In: Moletta, R., Ed., La Méthanisation, Edition Tec & Doc., 3-8.
[12]  Chanakya, H.N., Reddy, B.V.V. and Modak, J. (2009) Biomethanation of Herbaceous Biomass Residues Using 3-Zone Plug Flow Like Digesters—A Case Study from India. Renewable Energy, 34, 416-420.
https://doi.org/10.1016/j.renene.2008.05.003
[13]  Jagadish, K.S., Chanakya, H.N., Rajabapaiah, P. and Anand, V. (1998) Plug Flow Digestors for Biogas Generation from Leaf Biomass. Biomass and Bioenergy, 14, 415-423.
https://doi.org/10.1016/s0961-9534(98)00003-8
[14]  Bernet, N. and Buffière, P. (2008) Caractérisation de la mise en œuvre de la méthanisation. In: Moletta, R., Ed., La Méthanisation, Edition Tec & Doc.
[15]  Mata-Alvarez, J. (2002) Fundamentals of the Anaerobic Digestion Proches. In: Mata-Alvarez, J., Ed., Biomethanization of the Organic Fraction of Municipal Solid Wastes, IWA Publishing, 1-20.
[16]  Marchaim, U. (1992) Biogas Processes for Sustainable Development. FAO.
[17]  Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S. and Rana, V. (2004) Enhancement of Biogas Production from Solid Substrates Using Different Techniques—A Review. Bioresource Technology, 95, 1-10.
https://doi.org/10.1016/j.biortech.2004.02.010
[18]  Moletta, R. (2011) La méthanisation. 2ième Edition, Tec & Doc. Lavoisier.
[19]  Schnürer, A. and Jarvis, Â. (2010) Microbiological Handbook for Biogas Plants, Swedish Waste Management, Swedish Gas Centre Report. Branch Ministry of Agriculture and Lands.
[20]  Pavlostathis, S.G. and Giraldo‐Gomez, E. (1991) Kinetics of Anaerobic Treatment: A Critical Review. Critical Reviews in Environmental Control, 21, 411-490.
https://doi.org/10.1080/10643389109388424
[21]  Bollon, J., Le-hyaric, R., Benbelkacem, H. and Buffiere, P. (2011) Development of a Kinetic Model for Anaerobic Dry Digestion Processes: Focus on Acetate Degradation and Moisture Content. Biochemical Engineering Journal, 56, 212-218.
https://doi.org/10.1016/j.bej.2011.06.011
[22]  Gujer, W. and Zehnder, A.J.B. (1983) Conversion Processes in Anaerobic Digestion. Water Science and Technology, 15, 127-167.
https://doi.org/10.2166/wst.1983.0164
[23]  Nabila, L. (2016) Dépollution des déchets riches en matière organique (Boues de station d’épuration et déchets d’abattoir) par digestion anaérobie: Valorisation énergétique et production du méthane. Thèses de Doctorat, Université Badji Mokhtar-Annaba.
[24]  Bernet, N. and Buffière, P. (2011) Caractérisation de la mise en œuvre de la méthanisation. In Moletta, R., Ed., La Méthanisation, 2nd Edition, Edition Tec & Doc., 87-113.
[25]  Camacho, P. and Prévot, C. (2011) Méthanisation des boues. In: Moletta, R., Ed., La Méthanisation, 2nd Edition, Edition Tec & Doc., 87-113.
[26]  Athanasoulia, E., Melidis, P. and Aivasidis, A. (2012) Optimization of Biogas Production from Waste Activated Sludge through Serial Digestion. Renewable Energy, 47, 147-151.
https://doi.org/10.1016/j.renene.2012.04.038
[27]  Lagrange, B. (1989) Biométhane, Principes-Techniques-Utilisations. Ed. Edisud.
[28]  Théophile, E.M. and Karim, K.S. (n.d.) Etude, conception et realisation d’un biodigesteur domestique pour la production du biogaz: Application aux lisiers de porc. Mémoire en Ligne.
[29]  Adannou, H.A. (2019) Production industrielle du biogaz et valorisation énergétique: Etude du digesteur à bâche utilisant les déchets d’abattoirs. Thèse de Doctorat, Université Cheikh Anta Diop de Dakar.
[30]  Adannou, H.A., et al. (2019) Experimental Contribution to the Phenomena of Methanisation by Co-Digestion of Organic Waste from the Residence of the Cheikh Anta Diop University in Dakar. Applied Ecology and Environmental Sciences, 7, 56-65.
[31]  Li, K. and Teo, W.K. (1993) Use of an Internally Staged Permeator in the Enrichment of Methane from Biogas. Journal of Membrane Science, 78, 181-190.
https://doi.org/10.1016/0376-7388(93)85259-y
[32]  Gadre, R.V. (1989) Removal of Hydrogen Sulfide from Biogas by Chemoautotrophic Fixed‐Film Bioreactor. Biotechnology and Bioengineering, 34, 410-414.
https://doi.org/10.1002/bit.260340317
[33]  Travieso, L., Sànchez, E.P., Benitez, F. and Conde, J.L. (1993) Arthospira sp. Intensive Cultures for Food and Biogas Purification. Biotechnology Letters, 15, 1091-1094.
https://doi.org/10.1007/bf00129944
[34]  Syed, M., Soreanu, G., Falletta, P. and Bãcland, M. (2006) Removal of Hydrogen Sulfide from Gas Streams Using Biological Processes—A Review. Canadian Biosystems Engineering, 48, 1-14.
[35]  Adannou, H.A. (2024) Study of a Theoretical Approach to Bioprocess Modeling for the Performance of an Anaerobic Digester. GSC Advanced Research and Reviews, 21, 25-37.
https://doi.org/10.30574/gscarr.2024.21.2.0407
[36]  Wheeler, P., Jaatinen, T., Lindberg, A., Holm-Nielsen, J.B., Wellinger, A. and Petti-grew, A. (2000) Biogas Upgrading and Utilisation: Energy from Biological Conversion of Organic Waste. IEA-Bioenergy.
[37]  Horikawa, M.S., Rossi, F., Gimenes, M.L., Costa, C.M.M. and da Silva, M.G.C. (2004) Chemical Absorption of H2S for Biogas Purification. Brazilian Journal of Chemical Engineering, 21, 415-422.
https://doi.org/10.1590/s0104-66322004000300006
[38]  Kapdi, S.S., Vijay, V.K., Rajesh, S.K. and Prasad, R. (2005) Biogas Scrubbing, Compression and Storage: Perspective and Prospectus in Indian Context. Renewable Energy, 30, 1195-1202.
https://doi.org/10.1016/j.renene.2004.09.012
[39]  Coombs, J. and Meynell, P.J. (1982) Cleaning Biogas. The Digest (Newsletter of the BABA), 10, 5-9.
[40]  Hayes, T.D., Isaacson, H.R., Pfeffer, J.T. and Liu, Y.M. (1990) In Situ Methane Enrichment in Anaerobic Digestion. Biotechnology and Bioengineering, 35, 73-86.
https://doi.org/10.1002/bit.260350111
[41]  Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G. and Chmielewski, A.G. (2007) Application of Polyimide Membranes for Biogas Purification and Enrichment. Journal of Hazardous Materials, 144, 698-702.
https://doi.org/10.1016/j.jhazmat.2007.01.098
[42]  O’Keefe, D.M., Brigmon, R.L. and Chynoweth, D.P. (2000) Influence of Methane Enrichment by Aeration of Recirculated Supernatant on Microbial Activities during Anaerobic Digestion. Bioresource Technology, 71, 217-224.
https://doi.org/10.1016/s0960-8524(99)90073-1

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133