全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Cauchy, Cosserat, Clausius, Einstein, Maxwell, Weyl Equations Revisited

DOI: 10.4236/jmp.2024.1513097, PP. 2365-2397

Keywords: Janet Sequence, Spencer Sequence, Poincaré Sequence, Gauge Sequence, Lie Group of Transformations, Lie Pseudogroup of Transformations, Conformal Group of Transformations, Adjoint Representation

Full-Text   Cite this paper   Add to My Lib

Abstract:

The Cauchy stress equations (1823), the Cosserat couple-stress equations (1909), the Clausius virial equation (1870) and the Maxwell/Weyl equations (1873, 1918) are among the most famous partial differential equations that can be found today in any textbook dealing with elasticity theory, continuum mechanics, thermodynamics or electromagnetism. Over a manifold of dimension n, their respective numbers are n,n ( n1 )/2 ,1,n with a total of N=( n+1 ) ( n+2 )/2 , that is 15 when n=4 for space-time. This is also just the number of parameters of the Lie group of conformal transformations with n translations, n ( n1 )/2 rotations, 1 dilatation and n highly non-linear elations introduced by E. Cartan in 1922. The purpose of this paper is to prove that the form of these equations only depends on the structure of the conformal group for an arbitrary n1 because they are described as a whole by the (formal) adjoint of the first Spencer operator existing in the Spencer differential sequence. Such a group theoretical implication is obtained by applying totally new differential geometric methods in field theory. In particular, when n=4 , the main idea is not to shrink the group from 10 down to 4 or 2 parameters by using the Schwarzschild or Kerr metrics instead of the Minkowski metric, but to enlarge the group from 10 up to 11 or 15 parameters by using the Weyl or conformal group instead of the Poincaré

References

[1]  Pommaret, J.F. (1978) Systems of Partial Differential Equations and Lie Pseudogroups. Gordon and Breach.
[2]  Pommaret, J.F. (1994) Partial Differential Equations and Group Theory. Kluwer.
http://dx.doi.org/10.1007/978-94-017-2539-2
[3]  Pommaret, J. (2014) The Mathematical Foundations of Gauge Theory Revisited. Journal of Modern Physics, 5, 157-170.
https://doi.org/10.4236/jmp.2014.55026
[4]  Pommaret, J.F. (2016) From Thermodynamics to Gauge Theory: The Virial Theorem Revisited. In: Bailey, L., Eds., Gauge Theories and Differential Geometry, Nova Science Publishers, 1-44.
[5]  Pommaret, J. (2024) From Control Theory to Gravitational Waves. Advances in Pure Mathematics, 14, 49-100.
https://doi.org/10.4236/apm.2024.142004
[6]  Poincaré, H. (1901) Sur une Forme Nouvelle des Equations de la Mécanique. Comptes Rendus de lAcadémie des Sciences, 132, 369-371.
[7]  Bialynicki-Birula, A. (1962) On Galois Theory of Fields with Operators. American Journal of Mathematics, 84, 89-109.
https://doi.org/10.2307/2372805
[8]  Pommaret, J.F. (1983) Differential Galois Theory. Gordon and Breach.
[9]  Pommaret, J.F. (2023) Differential Galois Theory and Hopf Algebras for Lie Pseudogroups. arXiv: 2308.03759
https://arxiv.org/abs/2308.03759
[10]  Pommaret, J.F. (2012) Spencer Operator and Applications: From Continuum Mechanics to Mathematical Physics. In: Gan, Y., Ed., Continuum MechanicsProgress in Fundamentals and Engineering Applications, InTech Open, 1-32.
https://doi.org/10.5772/35607
[11]  Spencer, D.C. (1965) Overdetermined Systems of Partial Differential Equations. Bulletin of the American Mathematical Society, 75, 1-114.
[12]  Spencer, D.C. and Kumpera, A. (1972) Lie Equations. Princeton University Press.
[13]  Pommaret, J.F. (2021) The Conformal Group Revisited. Journal of Modern Physics, 12, 1822-1842.
https://doi.org/10.4236/jmp.2021.1213106
[14]  Weyl, H. (1918, 1952) Space, Time, Matter. Dover.
[15]  Cauchy, A.L. (1823) Recherches sur l’Equilibre et le mouvement des Corps Solides ou Fluides, élastiques ou non élastiques. In: Cauchy, A.L., Ed., Oeuvres Complètes: Series 2. Cambridge Library CollectionMathematics, Cambridge University Press, 300-304.
[16]  Cosserat, E. and Cosserat, F. (1909) Théorie des Corps déformables. Herman.
[17]  Maxwell, J.C. (1873) A Treatise on Electricity and Magnetism. Clarendon Press.
[18]  Pommaret, J.F. (1988) Lie Pseudogroups and Mechanics. Gordon and Breach.
[19]  Pommaret, J.F. (2023) Killing Operator for the Kerr Metric. Journal of Modern Physics, 14, 31-59.
https://doi.org/10.4236/jmp.2023.141003
[20]  Pommaret, J.F. (1997) François Cosserat and the Secret of the Mathematical Theory of Elasticity. Annales des Ponts et Chaussées, 82, 59-66.
[21]  Pommaret, J.-. (2021) Minimum Parametrization of the Cauchy Stress Operator. Journal of Modern Physics, 12, 453-482.
https://doi.org/10.4236/jmp.2021.124032
[22]  Pommaret, J. (2023) Gravitational Waves and Parametrizations of Linear Differential Operators. In: Frajuca, C., Ed., Gravitational WavesTheory and Observations, IntechOpen, 3-39.
https://doi.org/10.5772/intechopen.1000851
[23]  Pommaret, J.F. (2022) How Many Structure Constants Do Exist in Riemannian Geometry? Mathematics in Computer Science, 16, Article No. 23.
https://doi.org/10.1007/s11786-022-00546-3
[24]  Pommaret, J.F. (1991) Deformation Theory of Algebraic and Geometric Structures. In: Pommaret, J.F., Ed., Topics in Invariant Theory, Springer, 244-254.
https://doi.org/10.1007/bfb0083506
[25]  Pommaret, J.F. (2017) Why Gravitational Waves Cannot Exist. Journal of Modern Physics, 8, 2122-2158.
https://doi.org/10.4236/jmp.2017.813130
[26]  Pommaret, J.F. (2001) Partial Differential Control Theory. Kluwer.
[27]  Pommaret, J. (2005) 5 Algebraic Analysis of Control Systems Defined by Partial Differential Equations. In: Lamnabhi-Lagarrigue, F., Loría, A. and Panteley, E., Eds., Advanced Topics in Control Systems Theory, Springer, 155-223.
https://doi.org/10.1007/11334774_5
[28]  Pommaret, J.F. (2010) Parametrization of Cosserat Equations. Acta Mechanica, 215, 43-55.
https://doi.org/10.1007/s00707-010-0292-y
[29]  Pommaret, J.F. (2022) Nonlinear Conformal Electromagnetism. Journal of Modern Physics, 13, 442-494.
https://doi.org/10.4236/jmp.2022.134031
[30]  Rotman, J.J. (1979) An Introduction to Homological Algebra. Academic Press.
[31]  Macaulay, F.S. (1916) The Algebraic Theory of Modular Systems, Cambridge Tract 19. Cambridge University Press.
[32]  Pommaret, J.F. (2018) New Mathematical Methods for Physics, Mathematical Physics Books. Nova Science Publishers, 150.
[33]  Pommaret, J. (2013) The Mathematical Foundations of General Relativity Revisited. Journal of Modern Physics, 4, 223-239.
https://doi.org/10.4236/jmp.2013.48a022
[34]  Pommaret, J.F. (2021) Homological Solution of the Lanczos Problems in Arbitrary Dimension. Journal of Modern Physics, 12, 829-858.
[35]  Pommaret, J.F. (2019) The Mathematical Foundations of Elasticity and Electromagnetism Revisited. Journal of Modern Physics, 10, 1566-1595.
https://doi.org/10.4236/jmp.2019.1013104
[36]  Pommaret, J.F. (2024) Gravitational Waves and the Foundation of Riemannian Geometry. Advances in Mathematical Research, 35, 95-161.
[37]  Salih, M.A. (2023) Complex Maxwell’s Equations. Journal of Modern Physics, 14, 1662-1671.
https://doi.org/10.4236/jmp.2023.1412097

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133