全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

阿托品在近视防控中不同作用机制的研究进展
Research Progress on the Different Mechanisms of Athropine in Myopia Prevention and Control

DOI: 10.12677/hjo.2024.134016, PP. 119-127

Keywords: 近视,阿托品,机制
Myopia
, Atropine, Mechanism

Full-Text   Cite this paper   Add to My Lib

Abstract:

近年来近视发病率在全世界范围内不断攀升,尽管在政府及医院监管下,部分地区近视发病率较之前稍有下降,但因人群基数大,高度近视、病理性近视占比不断升高,现仍给社会、家庭及个人带来巨大负担。在近视防控过程中,常见的方法包括行为干预、光学及药物干预;其中阿托品已广泛应用在近视防控过程中,并取得了疗效。然而,尽管科学家们做了大量研究,阿托品的具体作用机制尚未完全明确,甚至不同研究得出的结论却都截然不同。本综述收集了不同的临床及动物实验,希望从不同的组织结构及分子生物的变化过程中进一步探索阿托品在近视防控过程中的作用机制,并为后续研究提供一些新思路。
In recent years, the incidence of myopia has been rising around the world. Although in some areas under the supervision of the government and hospitals, the incidence rate of myopia has dropped slightly than before, due to the large population base, the increasing proportion of high myopia and pathological myopia brings a huge burden to families and individuals. In the process of myopia prevention and control, common methods include behavioral intervention, optical, and drug intervention; among them, atropine has been widely used in the prevention and control of myopia and has achieved good results. However, despite extensive research by scientists, the specific mechanism of action of the product is not yet completely clear, and different studies have even reached completely different conclusions. This review collects different clinical and animal experiments that aim to summarize the role of atropine in the prevention and control of myopia from the changes in different tissue cells and molecular organisms and provide some new ideas for subsequent research.

References

[1]  Dolgin, E. (2015) The Myopia Boom. Nature, 519, 276-278.
https://doi.org/10.1038/519276a
[2]  Morgan, I. and Rose, K. (2005) How Genetic Is School Myopia? Progress in Retinal and Eye Research, 24, 1-38.
https://doi.org/10.1016/j.preteyeres.2004.06.004
[3]  Morgan, I.G., French, A.N., Ashby, R.S., Guo, X., Ding, X., He, M., et al. (2018) The Epidemics of Myopia: Aetiology and Prevention. Progress in Retinal and Eye Research, 62, 134-149.
https://doi.org/10.1016/j.preteyeres.2017.09.004
[4]  Morgan, I.G., He, M. and Rose, K.A. (2017) Epidemic of Pathologic Myopia: What Can Laboratory Studies and Epidemiology Tell Us? Retina, 37, 989-997.
https://doi.org/10.1097/iae.0000000000001272
[5]  Morgan, I.G., Ohno-Matsui, K. and Saw, S. (2012) Myopia. The Lancet, 379, 1739-1748.
https://doi.org/10.1016/s0140-6736(12)60272-4
[6]  Pan, C., Ramamurthy, D. and Saw, S. (2011) Worldwide Prevalence and Risk Factors for Myopia. Ophthalmic and Physiological Optics, 32, 3-16.
https://doi.org/10.1111/j.1475-1313.2011.00884.x
[7]  Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042.
https://doi.org/10.1016/j.ophtha.2016.01.006
[8]  Stevens, G.A., White, R.A., Flaxman, S.R., Price, H., Jonas, J.B., Keeffe, J., et al. (2013) Global Prevalence of Vision Impairment and Blindness: Magnitude and Temporal Trends, 1990-2010. Ophthalmology, 120, 2377-2384.
https://doi.org/10.1016/j.ophtha.2013.05.025
[9]  井云, 李清波, 吴仲英. 《高度近视防控专家共识(2023)》解读(上) [J]. 中国眼镜科技杂志, 2023(11): 108-111.
[10]  Xu, L., Zhuang, Y., Zhang, G., Ma, Y., Yuan, J., Tu, C., et al. (2021) Design, Methodology, and Baseline of Whole City-Million Scale Children and Adolescents Myopia Survey (CAMS) in Wenzhou, China. Eye and Vision, 8, Article No. 31.
https://doi.org/10.1186/s40662-021-00255-1
[11]  李遥, 周希瑗. 青少年近视影响因素及防控方法进展[J]. 临床医学进展, 2023, 13(5): 7325-7334.
[12]  Morgan, I.G., Wu, P., Ostrin, L.A., Tideman, J.W.L., Yam, J.C., Lan, W., et al. (2021) IMI Risk Factors for Myopia. Investigative Opthalmology & Visual Science, 62, Article 3.
https://doi.org/10.1167/iovs.62.5.3
[13]  Jonas, J.B., Ang, M., Cho, P., Guggenheim, J.A., He, M.G., Jong, M., et al. (2021) IMI Prevention of Myopia and Its Progression. Investigative Opthalmology & Visual Science, 62, Article 6.
https://doi.org/10.1167/iovs.62.5.6
[14]  Huang, J., Wen, D., Wang, Q., McAlinden, C., Flitcroft, I., Chen, H., et al. (2016) Efficacy Comparison of 16 Interventions for Myopia Control in Children: A Network Meta-Analysis. Ophthalmology, 123, 697-708.
https://doi.org/10.1016/j.ophtha.2015.11.010
[15]  Brodstein, R.S., Brodstein, D.E., Olson, R.J., Hunt, S.C. and Williams, R.R. (1984) The Treatment of Myopia with Atropine and Bifocals. A Long-Term Prospective Study. Ophthalmology, 91, 1373-1378.
https://doi.org/10.1016/s0161-6420(84)34138-0
[16]  Gong, Q., Janowski, M., Luo, M., Wei, H., Chen, B., Yang, G., et al. (2017) Efficacy and Adverse Effects of Atropine in Childhood Myopia: A Meta-Analysis. JAMA Ophthalmology, 135, 624-630.
https://doi.org/10.1001/jamaophthalmol.2017.1091
[17]  Chua, W., Balakrishnan, V., Chan, Y., Tong, L., Ling, Y., Quah, B., et al. (2006) Atropine for the Treatment of Childhood Myopia. Ophthalmology, 113, 2285-2291.
https://doi.org/10.1016/j.ophtha.2006.05.062
[18]  Chia, A., Chua, W., Cheung, Y., Wong, W., Lingham, A., Fong, A., et al. (2012) Atropine for the Treatment of Childhood Myopia: Safety and Efficacy of 0.5%, 0.1%, and 0.01% Doses (Atropine for the Treatment of Myopia 2). Ophthalmology, 119, 347-354.
https://doi.org/10.1016/j.ophtha.2011.07.031
[19]  Yam, J.C., Jiang, Y., Tang, S.M., et al. (2019) Low-Concentration Atropine for Myopia Progression (LAMP) Study: A Randomized, Double-Blinded, Placebo-Controlled Trial of 0.05%, 0.025%, and 0.01% Atropine Eye Drops in Myopia Control. Ophthalmology, 126, 113-124.
[20]  Ambache, N. (1955) The Use and Limitations of Atropine for Pharmacological Studies on Autonomic Effectors. Pharmacological Reviews, 7, 467-494.
[21]  Kaiti, R. (2022) Role of Atropine in the Control of Myopia Progression—A Review. Beyoglu Eye Journal, 7, 157-166.
https://doi.org/10.14744/bej.2022.07742
[22]  Fang, P., Chung, M., Yu, H. and Wu, P. (2010) Prevention of Myopia Onset with 0.025% Atropine in Premyopic Children. Journal of Ocular Pharmacology and Therapeutics, 26, 341-345.
https://doi.org/10.1089/jop.2009.0135
[23]  Kumaran, A., Htoon, H.M., Tan, D. and Chia, A. (2015) Analysis of Changes in Refraction and Biometry of Atropine-and Placebo-Treated Eyes. Investigative Opthalmology & Visual Science, 56, 5650-5655.
https://doi.org/10.1167/iovs.14-14716
[24]  McBrien, N.A., Arumugam, B., Gentle, A., Chow, A. and Sahebjada, S. (2011) The M4 Muscarinic Antagonist MT‐3 Inhibits Myopia in Chick: Evidence for Site of Action. Ophthalmic and Physiological Optics, 31, 529-539.
https://doi.org/10.1111/j.1475-1313.2011.00841.x
[25]  Upadhyay, A. and Beuerman, R.W. (2020) Biological Mechanisms of Atropine Control of Myopia. Eye & Contact Lens: Science & Clinical Practice, 46, 129-135.
https://doi.org/10.1097/icl.0000000000000677
[26]  Barathi, V.A. and Beuerman, R.W. (2011) Molecular Mechanisms of Muscarinic Receptors in Mouse Scleral Fibroblasts: Prior to and after Induction of Experimental Myopia with Atropine Treatment. Molecular Vision, 17, 680-692.
[27]  Wess, J. (1996) Molecular Biology of Muscarinic Acetylcholine Receptors. Critical Reviews™ in Neurobiology, 10, 69-99.
https://doi.org/10.1615/critrevneurobiol.v10.i1.40
[28]  Caulfield, M.P. and Birdsall, N.J. (1998) International Union of Pharmacology. XVII. Classification of Muscarinic Acetyl-Choline Receptors. Pharmacological Reviews, 50, 279-290.
[29]  Volpicelli, L.A. and Levey, A.I. (2004) Muscarinic Acetylcholine Receptor Subtypes in Cerebral Cortex and Hippocampus. Progress in Brain Research, 145, 59-66.
https://doi.org/10.1016/s0079-6123(03)45003-6
[30]  Abrams, P., Andersson, K., Buccafusco, J.J., Chapple, C., de Groat, W.C., Fryer, A.D., et al. (2006) Muscarinic Receptors: Their Distribution and Function in Body Systems, and the Implications for Treating Overactive Bladder. British Journal of Pharmacology, 148, 565-578.
https://doi.org/10.1038/sj.bjp.0706780
[31]  Gimbel, H.V. (1973) The Control of Myopia with Atropine. Canadian Journal of Ophthalmology, 8, 527-532.
[32]  Lind, G.J., Chew, S.J., Marzani, D., et al. (1998) Muscarinic Acetylcholine Receptor Antagonists Inhibit Chick Scleral Chondrocytes. Investigative Ophthalmology & Visual Science, 39, 2217-2231.
[33]  Dartt, D.A. (2001) Regulation of Lacrimal Gland Secretion by Neurotransmitters and the EGF Family of Growth Factors. Experimental Eye Research, 73, 741-752.
https://doi.org/10.1006/exer.2001.1076
[34]  Collison, D.J., Coleman, R.A., James, R.S., et al. (2000) Characterization of Muscarinic Receptors in Human Lens Cells by Pharmacologic and Molecular Techniques. Investigative Ophthalmology & Visual Science, 41, 2633-2641.
[35]  Barathi, V.A., Weon, S.R. and Beuerman, R.W. (2009) Expression of Muscarinic Receptors in Human and Mouse Sclera and Their Role in the Regulation of Scleral Fibroblasts Proliferation. Molecular Vision, 15, 1277-1293.
[36]  Yue, J. and Mulder, K.M. (2001) Transforming Growth Factor-Β Signal Transduction in Epithelial Cells. Pharmacology & Therapeutics, 91, 1-34.
https://doi.org/10.1016/s0163-7258(01)00143-7
[37]  Hackel, P.O., Zwick, E., Prenzel, N. and Ullrich, A. (1999) Epidermal Growth Factor Receptors: Critical Mediators of Multiple Receptor Pathways. Current Opinion in Cell Biology, 11, 184-189.
https://doi.org/10.1016/s0955-0674(99)80024-6
[38]  Rude Voldborg, B., Damstrup, L., Spang-Thomsen, M. and Skovgaard Poulsen, H. (1997) Epidermal Growth Factor Receptor (EGFR) and EGFR Mutations, Function and Possible Role in Clinical Trials. Annals of Oncology, 8, 1197-1206.
https://doi.org/10.1023/a:1008209720526
[39]  吴劲松, 李姝蓉, 熊伟伟. 阿托品对大鼠巩膜成纤维细胞增殖和凋亡的影响及其机制[J]. 眼科新进展, 2023, 43(4): 266-269.
[40]  余嘉珍, 莫亚. 近视小鼠巩膜成纤维细胞的基因表达谱:基于单细胞RNA测序的生物信息学分析[J]. 南方医科大学学报, 2021, 41(7): 1087-1092.
[41]  Yang, Q., Lv, S., Zhu, H., Zhang, L., Li, H. and Song, S. (2022) A Potential Research Target for Scleral Remodeling: Effect of Mir-29a on Scleral Fibroblasts. Ophthalmic Research, 65, 566-574.
https://doi.org/10.1159/000525189
[42]  Wu, J., Zhao, Y., Fu, Y., Li, S. and Zhang, X. (2021) Effects of Lumican Expression on the Apoptosis of Scleral Fibroblasts: in Vivo and in Vitro Experiments. Experimental and Therapeutic Medicine, 21, Article No. 495.
https://doi.org/10.3892/etm.2021.9926
[43]  Zhao, F., Zhou, Q., Reinach, P.S., Yang, J., Ma, L., Wang, X., et al. (2018) Cause and Effect Relationship between Changes in Scleral Matrix Metallopeptidase-2 Expression and Myopia Development in Mice. The American Journal of Pathology, 188, 1754-1767.
https://doi.org/10.1016/j.ajpath.2018.04.011
[44]  Liu, H., Kenning, M.S., Jobling, A.I., McBrien, N.A. and Gentle, A. (2017) Reduced Scleral TIMP-2 Expression Is Associated with Myopia Development: TIMP-2 Supplementation Stabilizes Scleral Biomarkers of Myopia and Limits Myopia Development. Investigative Opthalmology & Visual Science, 58, 1971-1981.
https://doi.org/10.1167/iovs.16-21181
[45]  郑卓涛, 张凌月, 封炎, 等. 低浓度阿托品滴眼液对近视儿童青少年视网膜与脉络膜厚度及微循环的影响[J]. 眼科新进展, 2023, 43(11): 887-892.
[46]  刘素江, 韩惠芳, 韩爱军, 等. 阿托品眼药水对中度近视豚鼠视网膜功能的作用研究[J]. 中国临床药理学杂志, 2019, 35(15): 1606-1608.
[47]  Xu, H., Ye, L., Peng, Y., Yu, T., Li, S., Weng, S., et al. (2023) Potential Choroidal Mechanisms Underlying Atropine’s Antimyopic and Rebound Effects: A Mediation Analysis in a Randomized Clinical Trial. Investigative Opthalmology & Visual Science, 64, Article 13.
https://doi.org/10.1167/iovs.64.4.13
[48]  Xiong, S., He, X., Zhang, B., Deng, J., Wang, J., Lv, M., et al. (2020) Changes in Choroidal Thickness Varied by Age and Refraction in Children and Adolescents: A 1-Year Longitudinal Study. American Journal of Ophthalmology, 213, 46-56.
https://doi.org/10.1016/j.ajo.2020.01.003
[49]  Jin, P., Zou, H., Xu, X., Chang, T.C., Zhu, J., Deng, J., et al. (2019) Longitudinal Changes in Choroidal and Retinal Thicknesses in Children with Myopic Shift. Retina, 39, 1091-1099.
https://doi.org/10.1097/iae.0000000000002090
[50]  Wallman, J. and Winawer, J. (2004) Homeostasis of Eye Growth and the Question of Myopia. Neuron, 43, 447-468.
https://doi.org/10.1016/j.neuron.2004.08.008
[51]  Nickla, D.L., Zhu, X. and Wallman, J. (2013) Effects of Muscarinic Agents on Chick Choroids in Intact Eyes and Eyecups: Evidence for a Muscarinic Mechanism in Choroidal Thinning. Ophthalmic and Physiological Optics, 33, 245-256.
https://doi.org/10.1111/opo.12054
[52]  Ji, Y., Kang, Y. and Chen, S. (2023) Effects of Endogenous Dopamine Induced by Low Concentration Atropine Eye Drops on Choroidal Neovascularization in High Myopia Mice. International Journal of Ophthalmology, 16, 1034-1040.
https://doi.org/10.18240/ijo.2023.07.05
[53]  Chakroborty, D., Sarkar, C., Lu, K., Bhat, M., Dasgupta, P.S. and Basu, S. (2016) Activation of Dopamine D1 Receptors in Dermal Fibroblasts Restores Vascular Endothelial Growth Factor-A Production by These Cells and Subsequent Angiogenesis in Diabetic Cutaneous Wound Tissues. The American Journal of Pathology, 186, 2262-2270.
https://doi.org/10.1016/j.ajpath.2016.05.008
[54]  Nöll, G.N., Billek, M., Pietruck, C. and Schmidt, K. (1994) Inhibition of Nitric Oxide Synthase Alters Light Responses and Dark Voltage of Amphibian Photoreceptors. Neuropharmacology, 33, 1407-1412.
https://doi.org/10.1016/0028-3908(94)90042-6
[55]  Tsuyama, Y., Nöll, G.N. and Schmidt, K. (1993) L-Arginine and Nicotinamide Adenine Dinucleotide Phosphate Alter Dark Voltage and Accelerate Light Response Recovery in Isolated Retinal Rods of the Frog (Rana temporaria). Neuroscience Letters, 149, 95-98.
https://doi.org/10.1016/0304-3940(93)90356-p
[56]  Shiells, R. and Falk, G. (1992) Retinal On-Bipolar Cells Contain a Nitric Oxide-Sensitive Guanylate Cyclase. NeuroReport, 3, 845-848.
https://doi.org/10.1097/00001756-199210000-00006
[57]  Sato, M., Ohtsuka, T. and Stell, W.K. (2011) Endogenous Nitric Oxide Enhances the Light-Response of Cones during Light-Adaptation in the Rat Retina. Vision Research, 51, 131-137.
https://doi.org/10.1016/j.visres.2010.10.011
[58]  Ashby, R., Ohlendorf, A. and Schaeffel, F. (2009) The Effect of Ambient Illuminance on the Development of Deprivation Myopia in Chicks. Investigative Opthalmology & Visual Science, 50, 5348-5354.
https://doi.org/10.1167/iovs.09-3419
[59]  Wang, Y., Ding, H., Stell, W.K., Liu, L., Li, S., Liu, H., et al. (2015) Exposure to Sunlight Reduces the Risk of Myopia in Rhesus Monkeys. PLOS ONE, 10, e0127863.
https://doi.org/10.1371/journal.pone.0127863
[60]  Rose, K.A., Morgan, I.G., Ip, J., Kifley, A., Huynh, S., Smith, W., et al. (2008) Outdoor Activity Reduces the Prevalence of Myopia in Children. Ophthalmology, 115, 1279-1285.
https://doi.org/10.1016/j.ophtha.2007.12.019
[61]  French, A.N., Ashby, R.S., Morgan, I.G. and Rose, K.A. (2013) Time Outdoors and the Prevention of Myopia. Experimental Eye Research, 114, 58-68.
https://doi.org/10.1016/j.exer.2013.04.018
[62]  Carr, B.J. and Stell, W.K. (2016) Nitric Oxide (NO) Mediates the Inhibition of Form-Deprivation Myopia by Atropine in Chicks. Scientific Reports, 6, Article No. 9.
https://doi.org/10.1038/s41598-016-0002-7
[63]  Thomson, K., Kelly, T., Karouta, C., Morgan, I. and Ashby, R. (2021) Insights into the Mechanism by Which Atropine Inhibits Myopia: Evidence against Cholinergic Hyperactivity and Modulation of Dopamine Release. British Journal of Pharmacology, 178, 4501-4517.
https://doi.org/10.1111/bph.15629
[64]  Schwahn, H.N., Kaymak, H. and Schaeffel, F. (2000) Effects of Atropine on Refractive Development, Dopamine Release, and Slow Retinal Potentials in the Chick. Visual Neuroscience, 17, 165-176.
https://doi.org/10.1017/s0952523800171184
[65]  Dowling, J.E. and Ehinger, B. (1978) The Interplexiform Cell System. I. Synapses of the Dopaminergic Neurons of the Goldfish Retina. Proceedings of the Royal Society B: Biological Sciences, 201, 7-26.
[66]  Mitsuma, T., Rhue, H., Hirooka, Y., et al. (1998) Distribution of Dopamine Transporter in the Rat: An Immunohistochemical Study. Endocrine Regulations, 32, 71-75.
[67]  Cohen, J., Hadjiconstantinou, M. and Neff, N.H. (1983) Activation of Dopamine-Containing Amacrine Cells of Retina: Light-Induced Increase of Acidic Dopamine Metabolites. Brain Research, 260, 125-127.
https://doi.org/10.1016/0006-8993(83)90771-0
[68]  Megaw, P., Morgan, I. and Boelen, M. (2001) Vitreal Dihydroxyphenylacetic Acid (DOPAC) as an Index of Retinal Dopamine Release. Journal of Neurochemistry, 76, 1636-1644.
https://doi.org/10.1046/j.1471-4159.2001.00145.x
[69]  Lee, S.S.Y., Mackey, D.A., Lingham, G., Crewe, J.M., Richards, M.D., Chen, F.K., et al. (2020) Western Australia Atropine for the Treatment of Myopia (WA‐ATOM) Study: Rationale, Methodology and Participant Baseline Characteristics. Clinical & Experimental Ophthalmology, 48, 569-579.
https://doi.org/10.1111/ceo.13736

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133