全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

Topical Review for Vehicle Integrated Photovoltaics

DOI: 10.4236/epe.2024.1612020, PP. 394-406

Keywords: Vehicle Integrated Photovoltaics, Solar-Powered Vehicles, High-Efficiency Modules, Driving Distance, CO2 Emission Reduction, Colour Variation, Partial Shading

Full-Text   Cite this paper   Add to My Lib

Abstract:

Vehicle integrated Photovoltaic (VIPV)-powered vehicles are expected to play a critical role in a future carbon neutrality society because it has been reported that the VIPVs have a great ability to reduce CO2 emission from the transport sector. Development of high-efficiency, low-cost, highly reliable solar cell modules is very important for VIPV. This paper presents a topical review for the VIPV. In this paper, impacts of high-efficiency solar cell modules on increases in electric vehicle (EV) driving distance, reducing CO2 emission and charging cost saving of EV powered by VIPV are shown. The paper also overviews development of high-efficiency VIPV modules and discusses about reliability, partial shading 3-dimensional curvature and color variations of VIPV modules. Future prospects for VIPV modules are also presented in this paper.

References

[1]  Masuda, T., Araki, K., Okumura, K., Urabe, S., Kudo, Y., Kimura, K., et al. (2017) Static Concentrator Photovoltaics for Automotive Applications. Solar Energy, 146, 523-531.
https://doi.org/10.1016/j.solener.2017.03.028
[2]  Miyoshi, T. (2017) Solar Charging System for Prius PHV. Journal of the Japan Society of Applied Electromagnetics and Mechanics, 25, 379-382.
https://doi.org/10.14243/jsaem.25.379
[3]  NEDO (2018) Interim Report PV-Powered Vehicle Strategy Committee.
http://www.nedo.go.jp/english/index.html
[4]  Sierra Rodriguez, A., de Santana, T., MacGill, I., Ekins‐Daukes, N.J. and Reinders, A. (2019) A Feasibility Study of Solar PV‐Powered Electric Cars Using an Interdisciplinary Modeling Approach for the Electricity Balance, CO2 Emissions, and Economic Aspects: The Cases of the Netherlands, Norway, Brazil, and Australia. Progress in Photovoltaics: Research and Applications, 28, 517-532.
https://doi.org/10.1002/pip.3202
[5]  Yamaguchi, M., Masuda, T., Araki, K., Sato, D., Lee, K., Kojima, N., et al. (2020) Role of PV-Powered Vehicles in Low-Carbon Society and Some Approaches of High-Efficiency Solar Cell Modules for Cars. Energy and Power Engineering, 12, 375-395.
https://doi.org/10.4236/epe.2020.126023
[6]  Yamaguchi, M., Masuda, T., Araki, K., Sato, D., Lee, K., Kojima, N., et al. (2020) Development of High‐Efficiency and Low‐Cost Solar Cells for PV‐Powered Vehicles Application. Progress in Photovoltaics: Research and Applications, 29, 684-693.
https://doi.org/10.1002/pip.3343
[7]  Commault, B., Duigou, T., Maneval, V., Gaume, J., Chabuel, F. and Voroshazi, E. (2021) Overview and Perspectives for Vehicle-Integrated Photovoltaics. Applied Sciences, 11, Article 11598.
https://doi.org/10.3390/app112411598
[8]  Thiel, C., Gracia Amillo, A., Tansini, A., Tsakalidis, A., Fontaras, G., Dunlop, E., et al. (2022) Impact of Climatic Conditions on Prospects for Integrated Photovoltaics in Electric Vehicles. Renewable and Sustainable Energy Reviews, 158, Article 112109.
https://doi.org/10.1016/j.rser.2022.112109
[9]  Sono Motors.
https://sonomotors.com/en/sion/
[10]  Lightyear.
https://lightyear.one/lightyear-one
[11]  IEA/PVPS Task 17 (2021) State-of-the-Art and Expected Benefits of PV-Powered Vehicles. Report IEA-PVPS T17-01.
[12]  Yamaguchi, M., Masuda, T., Araki, K., Ota, Y. and Nishioka, K. (2022) Impact and Recent Approaches of High-Efficiency Solar Cell Modules for PV-Powered Vehicles. Japanese Journal of Applied Physics, 61, SC0802.
https://doi.org/10.35848/1347-4065/ac461b
[13]  Yamaguchi, M., Masuda, T., Nakado, T., Yamada, K., Okumura, K., Satou, A., et al. (2023) Analysis for Expansion of Driving Distance and CO2 Emission Reduction of Photovoltaic-Powered Vehicles. IEEE Journal of Photovoltaics, 13, 343-348.
https://doi.org/10.1109/jphotov.2023.3242125
[14]  Masuda, T., Nakado, T., Yamaguchi, M., Takamoto, T., Nishioka, K. and Yamada, K. (2022) Public Road Tests of Toyota Prius Equipped with High Efficiency PV Module with Output Power of 860W. 2022 IEEE 49th Photovoltaics Specialists Conference (PVSC), Philadelphia, 5-10 June 2022, 467.
https://doi.org/10.1109/pvsc48317.2022.9938532
[15]  Kutter, C., Alanis, L.E., Neuhaus, D.H. and Heinrich, M. (2021) Yield Potential of Vehicle Integrated Photovoltaics on Commercial Trucks and Vans. 38th European PV Solar Energy Conference and Exhibition 2021, Online, 6-10 September 2021, 1412-1420.
https://doi.org/10.4229/EUPVSEC20212021-6DO.8.2
[16]  Yamaguchi, M., Nakamura, K., Ozaki, R., Kojima, N., Ohshita, Y., Masuda, T., et al. (2022) Analysis for the Potential of High‐Efficiency and Low‐Cost Vehicle‐Integrated Photovoltaics. Solar RRL, 7, Article 2200556.
https://doi.org/10.1002/solr.202200556
[17]  Green, M.A., Dunlop, E.D., Yoshita, M., Kopidakis, N., Bothe, K., Siefer, G., et al. (2023) Solar Cell Efficiency Tables (Version 63). Progress in Photovoltaics: Research and Applications, 32, 3-13.
https://doi.org/10.1002/pip.3750
[18]  Yamaguchi, M., Takamoto, T., Juso, H., Nakamura, K., Ozaki, R., Masuda, T., et al. (2024) Approaches for III‐V/Si Tandem Solar Cells and Comparative Studies on Si Tandem Solar Cells. Progress in Photovoltaics: Research and Applications.
https://doi.org/10.1002/pip.3780
[19]  Nanosolar.
http://www.nanosolar.com/
[20]  Retractable Car Cover Claimed to Gain Miles of EV Range Each Day.
https://www.autoklimaanlage.info/fileadmin/user_upload/Tagung_2013/PRO_KLIMA_Wecker_Potentials_of_Solar_Systems_in_Vehicles_for_Air_Conditioning_2013-12-04.pdf
[21]  Car Watch.
https://car.watcg.impress.co.jp/docs/new/169516.html
[22]  Ford C-Max Solar Energi: La Première Vraie Voiture Solaire? Automobile.
https://www.lepoint.fr/automobile/innovations/ford-c-max-solar-energi-la-premiere-vraie-voiture-solaire-03-01-2014-1776499_652.php
[23]  Hanergy Solar R.
https://www.allcarindex.com/concept/china/hanergy/solar-r/
[24]  SunWare Series-20.
https://en.sunware.solar/static/modules_pdf/DB_Module_20_2022_US.pdf
[25]  2020 Hyundai Sonata Hybrid: What to Expect from Its Mpg-Boosting Solar Roof.
https://www.greencarreports.com/news/1127957_2020-hyundai-sonata-hybrid-what-to-expect-from-its-mpg-boosting-solar-roof
[26]  Toyota.
https://global.toyota/newsroom/toyota/36254708.html
[27]  Kaneka.
https://www.kaneka.co.jp/topics/news/2023/nr230328.html
[28]  Oxford PV Sets 28.6% Efficiency Record for Full-Size Tandem Cell.
https://www.pv-magazine.com/
[29]  Araki, K., Lee, K., Masuda, T., Hayakawa, Y., Yamada, N., Ota, Y., et al. (2019) Rough and Straightforward Estimation of the Mismatching Loss by Partial Shading of the PV Modules Installed on an Urban Area or Car-Roof. 2019 IEEE 46th Photovoltaic Specialists Conference (PVSC), Chicago, 16-21 June 2019, 1218-1225.
https://doi.org/10.1109/pvsc40753.2019.8981199
[30]  Ota, Y., Araki, K., Nagaoka, A. and Nishioka, K. (2021) Evaluating the Output of a Car-Mounted Photovoltaic Module under Driving Conditions. IEEE Journal of Photovoltaics, 11, 1299-1304.
https://doi.org/10.1109/jphotov.2021.3087748
[31]  Ota, Y., Araki, K., Nagaoka, A. and Nishioka, K. (2021) Curve Correction of Vehicle‐integrated Photovoltaics Using Statistics on Commercial Car Bodies. Progress in Photovoltaics: Research and Applications, 30, 152-163.
https://doi.org/10.1002/pip.3473
[32]  Yamaguchi, M., Nakamura, K., Ozaki, R., Kojima, N., Ohshita, Y., Masuda, T., et al. (2023) Analysis of Climate Conditions Upon Driving Distance of Vehicle Integrated Photovoltaics‐Powered Vehicles. Energy Technology, 12, Article 2300692.
https://doi.org/10.1002/ente.202300692
[33]  Hirota, T., Kim, Y., Kobayashi, K., Kamiya, Y., Maeshima, S. and Komoto, K. (2022) Feasibility Study of Onboard PV for Passenger Vehicle Application (Second Report)—Influence of Vehicle Irradiation on Energy Balance of PV Generation and EV Energy Consumption. Transactions of Society of Automotive Engineers of Japan, 53, 784-789.
https://doi.org/10.11351/jsaeronbun.53.784
[34]  Masuda, T., Hirai, S., Inoue, M., Chantana, J., Kudo, Y. and Minemoto, T. (2018) Colorful, Flexible, and Lightweight Cu(In, Ga)Se2 Solar Cell by Lift-Off Process with Automotive Painting. IEEE Journal of Photovoltaics, 8, 1326-1330.
https://doi.org/10.1109/jphotov.2018.2859743
[35]  Araki, K., Ota, Y., Maeda, A., Kumano, M. and Nishioka, K. (2023) Solar Electric Vehicles as Energy Sources in Disaster Zones: Physical and Social Factors. Energies, 16, Article 3580.
https://doi.org/10.3390/en16083580
[36]  Araki, K., Ji, L., Kelly, G. and Yamaguchi, M. (2018) To Do List for Research and Development and International Standardization to Achieve the Goal of Running a Majority of Electric Vehicles on Solar Energy. Coatings, 8, Article 251.
https://doi.org/10.3390/coatings8070251
[37]  Yamada, N. (2022) Development of 3D Curved Photovoltaic Modules. JSAP Review, 2022, Article ID: 220402.
https://doi.org/10.11470/jsaprev.220402
[38]  Araki, K., Ota, Y., Nagaoka, A. and Nishioka, K. (2023) 3D Solar Irradiance Model for Non-Uniform Shading Environments Using Shading (Aperture) Matrix Enhanced by Local Coordinate System. Energies, 16, Article 4414.
https://doi.org/10.3390/en16114414
[39]  Mallon, K., Assadian, F. and Fu, B. (2017) Analysis of On-Board Photovoltaics for a Battery Electric Bus and Their Impact on Battery Lifespan. Energies, 10, Article 943.
https://doi.org/10.3390/en10070943
[40]  Sierra, A. and Reinders, A. (2020) Designing Innovative Solutions for Solar‐Powered Electric Mobility Applications. Progress in Photovoltaics: Research and Applications, 29, 802-818.
https://doi.org/10.1002/pip.3385

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133