|
Design 2024
基于机器学习的空间模式分析与景观设计优化研究
|
Abstract:
随着城市化进程的推进,景观设计面临着更为复杂的挑战,特别是在空间布局优化、功能区划和用户体验方面。机器学习技术作为一种强大的数据分析工具,在景观设计领域有着极大的应用潜力。本研究探讨了机器学习在空间模式分析中的应用,旨在为景观设计提供优化决策支持。研究发现,通过分析大量空间数据,机器学习能够发现潜在的空间分布规律、用户行为模式及其相互影响关系,从而帮助设计师在空间布局、功能区划和环境适应性方面进行优化。尽管如此,机器学习在景观设计中的应用也面临数据采集、模型复杂性和可解释性等挑战,不过未来随着技术的进步,其应用前景将更加广阔。
With the advancement of urbanization, landscape design faces more complex challenges, especially in terms of spatial layout optimization, functional zoning and user experience. As a powerful data analysis tool, machine learning technology has great application potential in the field of landscape design. This study explores the application of machine learning in spatial pattern analysis, aiming to provide optimization decision support for landscape design. The study found that by analyzing a large amount of spatial data, machine learning can discover potential spatial distribution patterns, user behavior patterns and their mutual influence, thereby helping designers to optimize spatial layout, functional zoning and environmental adaptability. Despite this, the application of machine learning in landscape design also faces challenges such as data collection, model complexity and interpretability. However, with the advancement of technology in the future, its application prospects will be broader.
[1] | 孟子流, 李腾龙. 机器学习技术发展的综述与展望[J]. 集成电路应用, 2020, 37(10): 56-57. |
[2] | 张润, 王永滨. 机器学习及其算法和发展研究[J]. 中国传媒大学学报(自然科学版), 2016, 23(2): 10-18, 24. |
[3] | 黄立威, 江碧涛, 吕守业, 等. 基于深度学习的推荐系统研究综述[J]. 计算机学报, 2018, 41(7): 1619-1647. |
[4] | 陈坚, 王宽, 李涛. 传统聚落的气候适应性自然山水空间模式分析——以萱州古镇为例[J]. 现代园艺, 2017(19): 44, 141. |
[5] | 郎月华, 李仁杰, 傅学庆. 基于GPS轨迹栅格化的旅游行为空间模式分析[J]. 旅游学刊, 2019, 34(6): 48-57. |
[6] | 王玮, 韦姿言, 张嘉龙, 等. 基于KANO模型分析的生态乡村景观设计需求聚类研究——以长三角地区乡村聚落为例[J]. 现代城市研究, 2024(8): 120-125. |
[7] | 王军, 傅伯杰, 陈利顶. 景观生态规划的原理和方法[J]. 资源科学, 1999, 21(2): 73-78. |
[8] | 王江波, 连芝锐, 冯涛, 等. 基于机器学习的时空出行选择行为研究综述与展望[J]. 地理科学进展, 2024, 43(8): 1649-1665. |
[9] | 陈星汉, 于瀚婷, 熊若璟, 等. 基于空间句法与机器学习的中国古典园林空间指征分析框架建构[J]. 风景园林, 2024, 31(3): 123-131. |
[10] | Naderi, J.R. and Raman, B. (2005) Capturing Impressions of Pedestrian Landscapes Used for Healing Purposes with Decision Tree Learning. Landscape and Urban Planning, 73, 155-166. https://doi.org/10.1016/j.landurbplan.2004.11.012 |
[11] | Lee, J., Kim, D. and Park, J. (2022) A Machine Learning and Computer Vision Study of the Environmental Characteristics of Streetscapes That Affect Pedestrian Satisfaction. Sustainability, 14, Article 5730. https://doi.org/10.3390/su14095730 |
[12] | 陈然. 基于生成对抗网络的风景园林生成设计研究[D]: [硕士学位论文]. 北京: 北京林业大学, 2022. |
[13] | 陈然, 赵晶. 基于样式生成对抗网络的风景园林方案生成及设计特征识别[J]. 风景园林, 2023, 30(7): 12-21. |