|
肠道菌群与矮小症相关性研究进展
|
Abstract:
矮小症是指身高在同一种族、年龄和性别中比平均值低两个标准差。严重的身材矮小将会影响青少年儿童的心理健康和生活质量,密切关注儿童身高变化,及时明确病因并进行有效干预,对儿童青少年的健康成长具有重要意义。肠道菌群在调节免疫、维持肠上皮稳态、调节营养代谢以及激素水平中发挥着重要作用。菌群组成和功能异常将直接影响宿主健康,严重者可出现生长发育迟滞。近年来,部分临床研究探讨了肠道菌群在矮小症儿童中的调节作用,引起了人们广泛关注。本文结合课题组研究结果,对肠道菌群与矮小症的相关研究进行系统综述。
Short stature refers to individuals who are more than two standard deviations below the average height for the same race, age, and sex. Severe short stature will affect the mental health and quality of life of children and adolescents. It is important to pay close attention to the changes in children’s height, identify the causes of the disease in time and make effective interventions for the healthy growth of children and adolescents. Gut microbiota plays an important role in regulating immunity, maintaining intestinal epithelial homeostasis, regulating nutritional metabolism and hormone levels. Abnormalities in the composition and function of gut microbiota will directly affect the health of the host, and growth retardation may occur in severe cases. In recent years, some clinical studies have explored the regulatory role of gut microbiota in children with short stature, which has attracted widespread attention. In this paper, we combine the research results of our group to provide a systematic review of the studies related to gut microbiota and short stature.
[1] | Maghnie, M., Labarta, J.I., Koledova, E. and Rohrer, T.R. (2018) Short Stature Diagnosis and Referral. Frontiers in Endocrinology, 8, Article 374. https://doi.org/10.3389/fendo.2017.00374 |
[2] | Park, E., Lee, H.J., Choi, H.J., Ahn, Y.H., Han, K.H., Kim, S.H., et al. (2021) Incidence of and Risk Factors for Short Stature in Children with Chronic Kidney Disease: Results from the Know-Ped CKD. Pediatric Nephrology, 36, 2857-2864. https://doi.org/10.1007/s00467-021-05054-3 |
[3] | Yue, D., Miller, M.R. and Clarson, C.L. (2018) Evaluation of Referrals for Short Stature: A Retrospective Chart Review. Paediatrics & Child Health, 24, e74-e77. https://doi.org/10.1093/pch/pxy079 |
[4] | Allen, D.B. and Cuttler, L. (2013) Short Stature in Childhood—Challenges and Choices. New England Journal of Medicine, 368, 1220-1228. https://doi.org/10.1056/nejmcp1213178 |
[5] | Sommer, R., Bullinger, M., Chaplin, J., Do, J., Power, M., Pleil, A., et al. (2017) Experiencing Health‐related Quality of Life in Paediatric Short Stature—A Cross‐Cultural Analysis of Statements from Patients and Parents. Clinical Psychology & Psychotherapy, 24, 1370-1376. https://doi.org/10.1002/cpp.2105 |
[6] | Sandberg, D.E. and Voss, L.D. (2002) The Psychosocial Consequences of Short Stature: A Review of the Evidence. Best Practice & Research Clinical Endocrinology & Metabolism, 16, 449-463. https://doi.org/10.1053/beem.2002.0211 |
[7] | Valdes, A.M., Walter, J., Segal, E. and Spector, T.D. (2018) Role of the Gut Microbiota in Nutrition and Health. BMJ, 361, k2179. https://doi.org/10.1136/bmj.k2179 |
[8] | Lui, J.C. (2023) Gut Microbiota in Regulation of Childhood Bone Growth. Experimental Physiology, 109, 662-671. https://doi.org/10.1113/ep091620 |
[9] | Durda-Masny, M., Ciomborowska-Basheer, J., Makałowska, I. and Szwed, A. (2022) The Mediating Role of the Gut Microbiota in the Physical Growth of Children. Life, 12, Article 152. https://doi.org/10.3390/life12020152 |
[10] | Jensen, E.A., Young, J.A., Mathes, S.C., List, E.O., Carroll, R.K., Kuhn, J., et al. (2020) Crosstalk between the Growth Hormone/Insulin-Like Growth Factor-1 Axis and the Gut Microbiome: A New Frontier for Microbial Endocrinology. Growth Hormone & IGF Research, 53, Article ID: 101333. https://doi.org/10.1016/j.ghir.2020.101333 |
[11] | Weger, B.D., Gobet, C., Yeung, J., Martin, E., Jimenez, S., Betrisey, B., et al. (2019) The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metabolism, 29, 362-382.e8. https://doi.org/10.1016/j.cmet.2018.09.023 |
[12] | Yan, L., Ye, B., Yang, M., Shan, Y., Yan, D., Fang, D., et al. (2024) Gut Microbiota and Metabolic Changes in Children with Idiopathic Short Stature. BMC Pediatrics, 24, Article No. 468. https://doi.org/10.1186/s12887-024-04944-3 |
[13] | Li, L., Chen, L., Yang, Y., Wang, J., Guo, L., An, J., et al. (2022) Characteristics of Gut Microbiome and Its Metabolites, Short-Chain Fatty Acids, in Children with Idiopathic Short Stature. Frontiers in Endocrinology, 13, Article 890200. https://doi.org/10.3389/fendo.2022.890200 |
[14] | Miao, J., Lai, P., Wang, K., Fang, G., Li, X., Zhang, L., et al. (2023) Characteristics of Intestinal Microbiota in Children with Idiopathic Short Stature: A Cross-Sectional Study. European Journal of Pediatrics, 182, 4537-4546. https://doi.org/10.1007/s00431-023-05132-8 |
[15] | Li, L., Wang, Y., Huang, Y., Lu, Y., Wang, W., Chen, X., et al. (2024) Impact of Different Growth Hormone Levels on Gut Microbiota and Metabolism in Short Stature. Pediatric Research, 96, 115-123. https://doi.org/10.1038/s41390-024-03140-4 |
[16] | Lazar, L., Eshel, A., Moadi, L., Yackobovitch-Gavan, M., Bar-Maisels, M., Shtaif, B., et al. (2024) Children with Idiopathic Short Stature Have Significantly Different Gut Microbiota than Their Normal Height Siblings: A Case-Control Study. Frontiers in Endocrinology, 15, Article 1343337. https://doi.org/10.3389/fendo.2024.1343337 |
[17] | Huang, C., Meng, D., Li, Y., Lu, S., Yang, W., Wu, B., et al. (2023) Gut Microbiota Composition Alteration Analysis and Functional Categorization in Children with Growth Hormone Deficiency. Frontiers in Pediatrics, 11, Article 1133258. https://doi.org/10.3389/fped.2023.1133258 |
[18] | García Navas, P., Ruíz del Prado, M.Y., Villoslada Blanco, P., Recio Fernández, E., Ruíz del Campo, M. and Pérez Matute, P. (2024) Composition of the Microbiota in Patients with Growth Hormone Deficiency before and after Treatment with Growth Hormone. Anales de Pediatría (English Edition), 100, 404-411. https://doi.org/10.1016/j.anpede.2024.05.004 |
[19] | Martin, G.J. (1942) P-aminobenzoic Acid and Sulfonamides in Rat Nutrition. Experimental Biology and Medicine, 51, 56-59. https://doi.org/10.3181/00379727-51-13825 |
[20] | Dibner, J.J. and Richards, J.D. (2005) Antibiotic Growth Promoters in Agriculture: History and Mode of Action. Poultry Science, 84, 634-643. https://doi.org/10.1093/ps/84.4.634 |
[21] | Mikkelsen, K.H., Allin, K.H. and Knop, F.K. (2016) Effect of Antibiotics on Gut Microbiota, Glucose Metabolism and Body Weight Regulation: A Review of the Literature. Diabetes, Obesity and Metabolism, 18, 444-453. https://doi.org/10.1111/dom.12637 |
[22] | Shin, S.C., Kim, S., You, H., Kim, B., Kim, A.C., Lee, K., et al. (2011) drosophila Microbiome Modulates Host Developmental and Metabolic Homeostasis via Insulin Signaling. Science, 334, 670-674. https://doi.org/10.1126/science.1212782 |
[23] | Storelli, G., Defaye, A., Erkosar, B., Hols, P., Royet, J. and Leulier, F. (2011) Lactobacillus Plantarum Promotes Drosophila Systemic Growth by Modulating Hormonal Signals through Tor-Dependent Nutrient Sensing. Cell Metabolism, 14, 403-414. https://doi.org/10.1016/j.cmet.2011.07.012 |
[24] | Schwarzer, M., Makki, K., Storelli, G., Machuca-Gayet, I., Srutkova, D., Hermanova, P., et al. (2016) lactobacillus Plantarum Strain Maintains Growth of Infant Mice during Chronic Undernutrition. Science, 351, 854-857. https://doi.org/10.1126/science.aad8588 |
[25] | Lan, R.X., Lee, S.I. and Kim, I.H. (2017) Effects of Enterococcus Faecium SLB 120 on Growth Performance, Blood Parameters, Relative Organ Weight, Breast Muscle Meat Quality, Excreta Microbiota Shedding, and Noxious Gas Emission in Broilers. Poultry Science, 96, 3246-3253. https://doi.org/10.3382/ps/pex101 |
[26] | Izuddin, W.I., Loh, T.C., Samsudin, A.A., Foo, H.L., Humam, A.M. and Shazali, N. (2019) Effects of Postbiotic Supplementation on Growth Performance, Ruminal Fermentation and Microbial Profile, Blood Metabolite and GHR, IGF-1 and MCT-1 Gene Expression in Post-Weaning Lambs. BMC Veterinary Research, 15, Article No. 315. https://doi.org/10.1186/s12917-019-2064-9 |
[27] | Farooq, M.Z., Wang, X. and Yan, X. (2023) Effects of Aeriscardovia aeriphila on Growth Performance, Antioxidant Functions, Immune Responses, and Gut Microbiota in Broiler Chickens. Journal of Zhejiang University-SCIENCE B, 24, 1014-1026. https://doi.org/10.1631/jzus.b2200621 |
[28] | Chen, W.W., Liu, H.X., Liu, J., Yang, L.L., Liu, M. and Ma, H.J. (2019) Etiology and Genetic Diagnosis of Short Stature in Children. Chinese Journal of Contemporary Pediatrics, 21, 381-386. |
[29] | Wu, S., Liu, Q., Gu, W., Ni, S., Shi, X. and Zhu, Z. (2018) A Retrospective Analysis of Patients with Short Stature in the South of China between 2007 and 2015. BioMed Research International, 2018, Article ID: 5732694. https://doi.org/10.1155/2018/5732694 |
[30] | Zhang, L., Liu, C., Jiang, Q. and Yin, Y. (2021) Butyrate in Energy Metabolism: There Is Still More to Learn. Trends in Endocrinology & Metabolism, 32, 159-169. https://doi.org/10.1016/j.tem.2020.12.003 |
[31] | Jensen, E.A., Young, J.A., Jackson, Z., Busken, J., List, E.O., Carroll, R.K., et al. (2020) Growth Hormone Deficiency and Excess Alter the Gut Microbiome in Adult Male Mice. Endocrinology, 161, bqaa026. https://doi.org/10.1210/endocr/bqaa026 |
[32] | Hu, J., Yang, J., Chen, L., Meng, X., Zhang, X., Li, W., et al. (2022) Alterations of the Gut Microbiome in Patients with Pituitary Adenoma. Pathology and Oncology Research, 28, Article 1610402. https://doi.org/10.3389/pore.2022.1610402 |
[33] | Xu, R., Zhu, H., Zhang, C., Shen, G. and Feng, J. (2019) Metabolomic Analysis Reveals Metabolic Characteristics of Children with Short Stature Caused by Growth Hormone Deficiency. Clinical Science, 133, 777-788. https://doi.org/10.1042/cs20181005 |
[34] | Holscher, H.D. (2017) Dietary Fiber and Prebiotics and the Gastrointestinal Microbiota. Gut Microbes, 8, 172-184. https://doi.org/10.1080/19490976.2017.1290756 |
[35] | Davila, A., Blachier, F., Gotteland, M., Andriamihaja, M., Benetti, P., Sanz, Y., et al. (2013) Intestinal Luminal Nitrogen Metabolism: Role of the Gut Microbiota and Consequences for the Host. Pharmacological Research, 68, 95-107. https://doi.org/10.1016/j.phrs.2012.11.005 |
[36] | Shin, S.Y., Kim, S., Choi, J.W., Kang, S., Kim, T.O., Seo, G.S., et al. (2022) The Common and Unique Pattern of Microbiome Profiles among Saliva, Tissue, and Stool Samples in Patients with Crohn’s Disease. Microorganisms, 10, Article 1467. https://doi.org/10.3390/microorganisms10071467 |
[37] | Tett, A., Pasolli, E., Masetti, G., Ercolini, D. and Segata, N. (2021) Prevotella Diversity, Niches and Interactions with the Human Host. Nature Reviews Microbiology, 19, 585-599. https://doi.org/10.1038/s41579-021-00559-y |
[38] | Coker, M.O., Lebeaux, R.M., Hoen, A.G., Moroishi, Y., Gilbert-Diamond, D., Dade, E.F., et al. (2022) Metagenomic Analysis Reveals Associations between Salivary Microbiota and Body Composition in Early Childhood. Scientific Reports, 12, Article No. 13075. https://doi.org/10.1038/s41598-022-14668-y |